-
1
-
-
33847737038
-
-
0340-3793
-
P. S. Lysaght, J. Barnett, G. I. Bersuker, J. C. Woicik, D. A. Fischer, and B. J. Foran, Appl. Phys. (Berlin) 101, 24105 (2007). 0340-3793
-
(2007)
Appl. Phys. (Berlin)
, vol.101
, pp. 24105
-
-
Lysaght, P.S.1
Barnett, J.2
Bersuker, G.I.3
Woicik, J.C.4
Fischer, D.A.5
Foran, B.J.6
-
2
-
-
0036131799
-
-
0079-6816 10.1016/S0079-6816(01)00049-1.
-
R. J. Opila and J. Eng, Prog. Surf. Sci. 0079-6816 10.1016/S0079-6816(01) 00049-1 69, 125 (2002).
-
(2002)
Prog. Surf. Sci.
, vol.69
, pp. 125
-
-
Opila, R.J.1
Eng, J.2
-
3
-
-
33749658371
-
-
0094-243X 10.1063/1.2062980.
-
C. R. Brundle, G. Conti, H. Graoui, M. Foad, S. Hung, C. Wang, Y. S. Uritsky, P. Mack, and J. Wolstenholme, AIP Conf. Proc. 0094-243X 10.1063/1.2062980 788, 307 (2005).
-
(2005)
AIP Conf. Proc.
, vol.788
, pp. 307
-
-
Brundle, C.R.1
Conti, G.2
Graoui, H.3
Foad, M.4
Hung, S.5
Wang, C.6
Uritsky, Y.S.7
MacK, P.8
Wolstenholme, J.9
-
4
-
-
21044446818
-
-
0947-8396 10.1007/s00339-004-3037-8.
-
C. Driemeier, K. P. Bastos, G. V. Soares, L. Miotti, R. P. Pezzi, J. Morais, I. J. R. Baumvol, R. M. Wallace, and B. E. Gnade, Appl. Phys. A: Mater. Sci. Process. 0947-8396 10.1007/s00339-004-3037-8 80, 1045 (2005).
-
(2005)
Appl. Phys. A: Mater. Sci. Process.
, vol.80
, pp. 1045
-
-
Driemeier, C.1
Bastos, K.P.2
Soares, G.V.3
Miotti, L.4
Pezzi, R.P.5
Morais, J.6
Baumvol, I.J.R.7
Wallace, R.M.8
Gnade, B.E.9
-
5
-
-
0037767886
-
-
0003-6951 10.1063/1.1586483.
-
M. Quevedo-Lopez, M. El-Bouanani, M. J. Kim, B. E. Gnade, M. R. Visokay, A. LiFatou, M. J. Bevan, L. Colombo, and R. M. Wallace, Appl. Phys. Lett. 0003-6951 10.1063/1.1586483 82, 4669 (2003).
-
(2003)
Appl. Phys. Lett.
, vol.82
, pp. 4669
-
-
Quevedo-Lopez, M.1
El-Bouanani, M.2
Kim, M.J.3
Gnade, B.E.4
Visokay, M.R.5
Lifatou, A.6
Bevan, M.J.7
Colombo, L.8
Wallace, R.M.9
-
6
-
-
79956056584
-
-
0003-6951 10.1063/1.1476397.
-
M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, A. Shanware, and L. Colombo, Appl. Phys. Lett. 0003-6951 10.1063/1.1476397 80, 3183 (2002).
-
(2002)
Appl. Phys. Lett.
, vol.80
, pp. 3183
-
-
Visokay, M.R.1
Chambers, J.J.2
Rotondaro, A.L.P.3
Shanware, A.4
Colombo, L.5
-
7
-
-
33845781560
-
-
0003-6951 10.1063/1.2392992.
-
P. D. Kirsch, M. A. Quevedo-Lopez, S. A. Krishnan, B. H. Lee, G. Pant, M. J. Kim, R. M. Wallace, and B. E. Gnade, Appl. Phys. Lett. 0003-6951 10.1063/1.2392992 89, 242909 (2006).
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 242909
-
-
Kirsch, P.D.1
Quevedo-Lopez, M.A.2
Krishnan, S.A.3
Lee, B.H.4
Pant, G.5
Kim, M.J.6
Wallace, R.M.7
Gnade, B.E.8
-
11
-
-
57049179518
-
-
The attenuation lengths employed in this study were obtained from tables provided by, Standard Reference Database 82, Version 1.0, National Institute of Standards and Technology,. The TPP (Tanuma, Powell & Penn) model was employed as the source for the inelastic mean free path.
-
The attenuation lengths employed in this study were obtained from tables provided by C. J. Powell and A. Jablonski, Standard Reference Database 82, Version 1.0, National Institute of Standards and Technology, 2001. The TPP (Tanuma, Powell & Penn) model was employed as the source for the inelastic mean free path.
-
(2001)
-
-
Powell, C.J.1
Jablonski, A.2
-
12
-
-
57049150687
-
-
Report on the 47th IUVSTA Worksho'Angle-Resolved XPS: The Current Status and Future Prospects for Angle-resolved XPS of Nano and Subnano Films'.", (in press).
-
A. Herrera-Gomez, J. T. Grant, P. Cumpson, M. Jenko, F. S. Aguirre-Tostado, C. R. Brundle, T. Conard, G. Conti, C. S. Fadley, J. Fulghum, K. Kobayashi, L. Köver, H. Nohira, R. L. Opila, S. Oswald, R. Paynter, R. M. Wallace, W. S. M. Werner, and J. Wolstenholme, "Report on the 47th IUVSTA Workshop 'Angle-Resolved XPS: The Current Status and Future Prospects for Angle-resolved XPS of Nano and Subnano Films'." Surf. Interface Anal., (in press).
-
Surf. Interface Anal.
-
-
Herrera-Gomez, A.1
Grant, J.T.2
Cumpson, P.3
Jenko, M.4
Aguirre-Tostado, F.S.5
Brundle, C.R.6
Conard, T.7
Conti, G.8
Fadley, C.S.9
Fulghum, J.10
Kobayashi, K.11
Köver, L.12
Nohira, H.13
Opila, R.L.14
Oswald, S.15
Paynter, R.16
Wallace, R.M.17
Werner, W.S.M.18
Wolstenholme, J.19
-
14
-
-
34250652538
-
-
0021-8979 10.1063/1.2743818.
-
P. Sivasubramani, J. Kim, M. J. Kim, B. E. Gnade, and R. M. Wallace, J. Appl. Phys. 0021-8979 10.1063/1.2743818 101, 114108 (2007).
-
(2007)
J. Appl. Phys.
, vol.101
, pp. 114108
-
-
Sivasubramani, P.1
Kim, J.2
Kim, M.J.3
Gnade, B.E.4
Wallace, R.M.5
-
15
-
-
57049087465
-
-
A deliberate sample position optimization procedure was employed to ensure that the sample rotation axis, x-ray spot centroid, and photoelectron analyzer axis were coincident.
-
A deliberate sample position optimization procedure was employed to ensure that the sample rotation axis, x-ray spot centroid, and photoelectron analyzer axis were coincident.
-
-
-
-
16
-
-
0032047486
-
-
0142-2421 10.1002/(SICI)1096-9918(199804)26:4<249::AID-SIA3683.0.CO;2- A, (), and references therein.
-
S. Tougaard, Surf. Interface Anal. 0142-2421 10.1002/(SICI)1096- 9918(199804)26:4<249::AID-SIA3683.0.CO;2-A 26, 249 (1998), and references therein.
-
(1998)
Surf. Interface Anal.
, vol.26
, pp. 249
-
-
Tougaard, S.1
-
17
-
-
57049178952
-
-
The forward focusing is a diffraction effect in which the electrons are elastically scattered to follow an atomic row in crystalline samples, which results in an angular dependent photoelectron intensity distribution. The effect is minimized by employing a large acceptance angle in the electron analyzer. This large acceptance angle (16°) was included in the numerical modeling of the data.
-
The forward focusing is a diffraction effect in which the electrons are elastically scattered to follow an atomic row in crystalline samples, which results in an angular dependent photoelectron intensity distribution. The effect is minimized by employing a large acceptance angle in the electron analyzer. This large acceptance angle (16°) was included in the numerical modeling of the data.
-
-
-
-
18
-
-
57049175022
-
-
The software is available at.
-
The software is available at http://qro.cinvestav.mx/~AAnalyzer/.
-
-
-
-
19
-
-
57049140966
-
-
A common XPS spectra fitting approach is to find a set of peak parameters (binding energy, height, and width) by fitting a spectrum taken at one of the takeoff angles, and then using those parameters for the spectra taken at the remaining angles. By inspecting the quality of the fits, the parameters of the first spectra peak set are constrained to a value that would provide a better fit for the other spectra. The process is performed in an iterative "loop" and repeated until a "good" fit is found for all spectra. When to stothis "one-by-one" iterative process is often a subjective decision.
-
A common XPS spectra fitting approach is to find a set of peak parameters (binding energy, height, and width) by fitting a spectrum taken at one of the takeoff angles, and then using those parameters for the spectra taken at the remaining angles. By inspecting the quality of the fits, the parameters of the first spectra peak set are constrained to a value that would provide a better fit for the other spectra. The process is performed in an iterative "loop" and repeated until a "good" fit is found for all spectra. When to stop this "one-by-one" iterative process is often a subjective decision.
-
-
-
-
20
-
-
57049135721
-
-
CINVESTAV-Unidad Queretaro Internal Report (see).
-
A. Herrera-Gomez, " Simultaneous data fitting in ARXPS.," CINVESTAV-Unidad Queretaro Internal Report (see http://www.qro.cinvestav.mx/ ~aanalyzer/SimultaneousFitting.pdf).
-
Simultaneous Data Fitting in ARXPS
-
-
Herrera-Gomez, A.1
-
23
-
-
57049110990
-
-
See F. S. Aguirre-Tostado's contribution in Ref. 12.
-
See F. S. Aguirre-Tostado's contribution in Ref. 12.
-
-
-
-
25
-
-
79956038791
-
-
0003-6951 10.1063/1.1494121, (), and references therein.
-
A. Herrera-Gómez, A. Hegedus, and P. L. Meissner, Appl. Phys. Lett. 0003-6951 10.1063/1.1494121 81, 1014 (2002), and references therein.
-
(2002)
Appl. Phys. Lett.
, vol.81
, pp. 1014
-
-
Herrera-Gómez, A.1
Hegedus, A.2
Meissner, P.L.3
-
27
-
-
0032635743
-
-
Invited Talk at the 47th IUVSTA Workshoon Angle-Resolved XPS, Riviera Maya, Mexico, 26-30 March,;, 0169-4332 10.1016/S0169-4332(98)00752-1, (1999).
-
P. Cumpson, Invited Talk at the 47th IUVSTA Workshop on Angle-Resolved XPS, Riviera Maya, Mexico, 26-30 March, 2007; P. J. Cumpson, Appl. Surf. Sci. 0169-4332 10.1016/S0169-4332(98)00752-1 144-145, 16 (1999).
-
(2007)
Appl. Surf. Sci.
, vol.144-145
, pp. 16
-
-
Cumpson, P.1
Cumpson, P.J.2
-
28
-
-
57049109263
-
-
The total number of species considered in the analysis was 10, which would result in 30 structural parameters. As described in the text, and in Ref. in more detail, there are a number of correlations and self-consistency restrictions that are imposed into the analysis.
-
The total number of species considered in the analysis was 10, which would result in 30 structural parameters. As described in the text, and in Ref. in more detail, there are a number of correlations and self-consistency restrictions that are imposed into the analysis.
-
-
-
-
29
-
-
38549083295
-
-
0142-2421 10.1002/sia.2622, (), and references therein.
-
A. Herrera-Gomez, F. S. Aguirre-Tostado, Y. Sun, R. Contreras-Guerrero, R. M. Wallace, Y. Hisao, and E. Flint, Surf. Interface Anal. 0142-2421 10.1002/sia.2622 39, 904 (2007), and references therein.
-
(2007)
Surf. Interface Anal.
, vol.39
, pp. 904
-
-
Herrera-Gomez, A.1
Aguirre-Tostado, F.S.2
Sun, Y.3
Contreras-Guerrero, R.4
Wallace, R.M.5
Hisao, Y.6
Flint, E.7
-
30
-
-
57049106788
-
-
As described in Ref., a deviation from the bulk density would require a recalculation of the electron transport parameters. If the density increases, the attenuation length decreases accordingly, and vice versa. This would lead to new thicknesses and new densities, yielding into an iterative process that does not converge. The physical reason behind this lack of convergence is that the ARXPS technique cannot assess the density of the materials: a layer twice thicker but half denser would induce the same attenuation on the photoelectron signal, and the takeoff angle dependence would be indistinguishable from each other.
-
As described in Ref., a deviation from the bulk density would require a recalculation of the electron transport parameters. If the density increases, the attenuation length decreases accordingly, and vice versa. This would lead to new thicknesses and new densities, yielding into an iterative process that does not converge. The physical reason behind this lack of convergence is that the ARXPS technique cannot assess the density of the materials: a layer twice thicker but half denser would induce the same attenuation on the photoelectron signal, and the takeoff angle dependence would be indistinguishable from each other.
-
-
-
-
31
-
-
34547277537
-
-
0031-9007 10.1103/PhysRevLett.98.196101.
-
S. Guha and V. Narayanan, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett. 98.196101 98, 196101 (2007).
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 196101
-
-
Guha, S.1
Narayanan, V.2
|