메뉴 건너뛰기




Volumn 95, Issue 5, 2007, Pages 899-924

An overview of existing methods and recent advances in sequential Monte Carlo

Author keywords

Bayesian dynamical model; Filtering, prediction, and smoothing; Hidden Markov models; Parameter estimation; Particle filter; Sequential Monte Carlo; State space model; Tracking

Indexed keywords

HIDDEN MARKOV MODELS; IMAGE PROCESSING; PARAMETER ESTIMATION; STATE SPACE METHODS; SURFACE DISCHARGES;

EID: 44649107771     PISSN: 00189219     EISSN: None     Source Type: Journal    
DOI: 10.1109/JPROC.2007.893250     Document Type: Article
Times cited : (952)

References (123)
  • 1
    • 0030304310 scopus 로고    scopus 로고
    • Monte-Carlo filter and smoother for non-Gaussian nonlinear state space models
    • G. Kitagawa, "Monte-Carlo filter and smoother for non-Gaussian nonlinear state space models," J. Comput. Graph. Stat., vol. 1, pp. 1-25, 1996.
    • (1996) J. Comput. Graph. Stat , vol.1 , pp. 1-25
    • Kitagawa, G.1
  • 2
    • 0000417862 scopus 로고
    • Mixture models, Monte Carlo, Bayesian updating and dynamic models
    • M. West, "Mixture models, Monte Carlo, Bayesian updating and dynamic models," Comput. Sci. Stat., vol. 24, pp. 325-333, 1993.
    • (1993) Comput. Sci. Stat , vol.24 , pp. 325-333
    • West, M.1
  • 3
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • N. Gordon, D. Salmond, and A. F. Smith, "Novel approach to nonlinear/non-Gaussian Bayesian state estimation," IEE Proc. F. Radar Signal Process., vol. 140, pp. 107-113, 1993.
    • (1993) IEE Proc. F. Radar Signal Process , vol.140 , pp. 107-113
    • Gordon, N.1    Salmond, D.2    Smith, A.F.3
  • 9
    • 0015385037 scopus 로고
    • Nonlinear Bayesian estimation using Gaussian sum approximation
    • Aug
    • D. L. Alspach and H. W. Sorenson, "Nonlinear Bayesian estimation using Gaussian sum approximation," IEEE Trans. Automat. Control, vol. AC-17, no. 4, pp. 439-448, Aug. 1972.
    • (1972) IEEE Trans. Automat. Control , vol.AC-17 , Issue.4 , pp. 439-448
    • Alspach, D.L.1    Sorenson, H.W.2
  • 10
    • 0025421353 scopus 로고
    • Recursive nonlinear estimation: A geometric approach
    • R. Kulhavy, "Recursive nonlinear estimation: A geometric approach," Automatica, vol. 26, no. 3, pp. 545-555, 1990.
    • (1990) Automatica , vol.26 , Issue.3 , pp. 545-555
    • Kulhavy, R.1
  • 13
    • 0034186948 scopus 로고    scopus 로고
    • Gaussian filters for nonlinear filtering problems
    • May
    • K. Ito and K. Xiong, "Gaussian filters for nonlinear filtering problems," IEEE Trans. Automat. Control, vol. 45, no. 5, pp. 910-927, May 2000.
    • (2000) IEEE Trans. Automat. Control , vol.45 , Issue.5 , pp. 910-927
    • Ito, K.1    Xiong, K.2
  • 14
    • 84874286884 scopus 로고
    • Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering
    • J. Handschin and D. Mayne, "Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering," Int. J. Control, vol. 9, pp. 547-559, 1969.
    • (1969) Int. J. Control , vol.9 , pp. 547-559
    • Handschin, J.1    Mayne, D.2
  • 15
    • 0039816272 scopus 로고
    • Monte Carlo techniques for prediction and filtering of non-linear stochastic processes
    • J. Handschin, "Monte Carlo techniques for prediction and filtering of non-linear stochastic processes," Automatica, vol. 6, pp. 555-563, 1970.
    • (1970) Automatica , vol.6 , pp. 555-563
    • Handschin, J.1
  • 16
    • 84950788916 scopus 로고
    • A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when the fraction of missing information is modest: The SIR algorithm (discussion of Tanner and Wong)
    • D. B. Rubin, "A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when the fraction of missing information is modest: The SIR algorithm (discussion of Tanner and Wong)," J. Amer. Stat. Assoc., vol. 82, pp. 543-546, 1987.
    • (1987) J. Amer. Stat. Assoc , vol.82 , pp. 543-546
    • Rubin, D.B.1
  • 18
    • 84950943371 scopus 로고
    • Blind deconvolution via sequential imputations
    • J. Liu and R. Chen, "Blind deconvolution via sequential imputations," J. Roy. Stat. Soc. Ser. B, vol. 430, pp. 567-576, 1995.
    • (1995) J. Roy. Stat. Soc. Ser. B , vol.430 , pp. 567-576
    • Liu, J.1    Chen, R.2
  • 19
    • 0001534675 scopus 로고    scopus 로고
    • Nonlinear filtering: Interacting particle solution
    • P. Del Moral, "Nonlinear filtering: Interacting particle solution," Markov Process. Relat. Fields, vol. 2, pp. 555-579, 1996.
    • (1996) Markov Process. Relat. Fields , vol.2 , pp. 555-579
    • Del Moral, P.1
  • 20
    • 0003665481 scopus 로고    scopus 로고
    • A. Doucet, N. De Freitas, and N. Gordon, Eds, New York: Springer
    • A. Doucet, N. De Freitas, and N. Gordon, Eds., Sequential Monte Carlo Methods in Practice. New York: Springer, 2001.
    • (2001) Sequential Monte Carlo Methods in Practice
  • 22
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte-Carlo methods for dynamic systems
    • J. Liu and R. Chen, "Sequential Monte-Carlo methods for dynamic systems," J. Roy. Stat. Soc. Ser. B, vol. 93, pp. 1032-1044, 1998.
    • (1998) J. Roy. Stat. Soc. Ser. B , vol.93 , pp. 1032-1044
    • Liu, J.1    Chen, R.2
  • 23
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte-Carlo sampling methods for Bayesian filtering
    • A. Doucet, S. Godsill, and C. Andrieu, "On sequential Monte-Carlo sampling methods for Bayesian filtering," Stat. Comput., vol. 10, pp. 197-208, 2000.
    • (2000) Stat. Comput , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 24
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for on line non-linear/non-Gaussian Bayesian tracking
    • Feb
    • M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, "A tutorial on particle filters for on line non-linear/non-Gaussian Bayesian tracking," IEEE Trans. Signal Process., vol. 50, no. 2, pp. 241-254, Feb. 2002.
    • (2002) IEEE Trans. Signal Process , vol.50 , Issue.2 , pp. 241-254
    • Arulampalam, M.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 26
    • 67649660213 scopus 로고    scopus 로고
    • Nonlinear and non-Gaussian state-space modeling with Monte-Carlo techniques: A survey and comparative study
    • D. N. Shanbhag and C. R. Rao, Eds. New York: Elsevier
    • H. Tanizaki, "Nonlinear and non-Gaussian state-space modeling with Monte-Carlo techniques: A survey and comparative study," in Handbook of Statistics 21. Stochastic Processes: Modelling and Simulation, D. N. Shanbhag and C. R. Rao, Eds. New York: Elsevier, 2003, pp. 871-929.
    • (2003) Handbook of Statistics 21. Stochastic Processes: Modelling and Simulation , pp. 871-929
    • Tanizaki, H.1
  • 27
    • 4043091425 scopus 로고    scopus 로고
    • Computational advances for and from Bayesian analysis
    • C. Andrieu, A. Doucet, and C. P. Robert, "Computational advances for and from Bayesian analysis," Stat. Sci., vol. 19, no. 1, pp. 118-127, 2004.
    • (2004) Stat. Sci , vol.19 , Issue.1 , pp. 118-127
    • Andrieu, C.1    Doucet, A.2    Robert, C.P.3
  • 28
    • 0001667705 scopus 로고
    • Bayesian inference in econometric models using Monte-Carlo integration
    • J. Geweke, "Bayesian inference in econometric models using Monte-Carlo integration," Econometrica, vol. 57, no. 6, pp. 1317-1339, 1989.
    • (1989) Econometrica , vol.57 , Issue.6 , pp. 1317-1339
    • Geweke, J.1
  • 29
    • 0000458272 scopus 로고
    • Using the SIR algorithm to simulate posterior distribution
    • J. M. Bernardo, M. DeGroot, D. Lindley, and A. Smith, Eds. Oxford, U.K, Clarendon
    • D. B. Rubin, "Using the SIR algorithm to simulate posterior distribution," in Bayesian Statistics 3, J. M. Bernardo, M. DeGroot, D. Lindley, and A. Smith, Eds. Oxford, U.K.: Clarendon, 1988, pp. 395-402.
    • (1988) Bayesian Statistics 3 , pp. 395-402
    • Rubin, D.B.1
  • 31
    • 0242550819 scopus 로고    scopus 로고
    • On-line inference for hidden Markov models via particle filters
    • P. Fearnhead and P. Clifford, "On-line inference for hidden Markov models via particle filters," J. Roy. Stat. Soc. Ser. B, vol. 65, pp. 887-899, 2003.
    • (2003) J. Roy. Stat. Soc. Ser. B , vol.65 , pp. 887-899
    • Fearnhead, P.1    Clifford, P.2
  • 32
    • 30344486983 scopus 로고    scopus 로고
    • Recursive Monte-Carlo filters: Algorithms and theoretical analysis
    • H. R. Künsch, "Recursive Monte-Carlo filters: Algorithms and theoretical analysis," Ann. Stat., vol. 33, no. 5, pp. 1983-2021, 2005.
    • (2005) Ann. Stat , vol.33 , Issue.5 , pp. 1983-2021
    • Künsch, H.R.1
  • 34
    • 84916593381 scopus 로고
    • A Bayesian approach to problems in stochastic estimation and control
    • Oct
    • Y. C. Ho and R. C. K. Lee, "A Bayesian approach to problems in stochastic estimation and control," IEEE Trans. Automat. Control, vol. AC-9, no. 4, pp. 333-339, Oct. 1964.
    • (1964) IEEE Trans. Automat. Control , vol.AC-9 , Issue.4 , pp. 333-339
    • Ho, Y.C.1    Lee, R.C.K.2
  • 35
    • 64349086891 scopus 로고    scopus 로고
    • P. Del Moral and J. Jacod, Interacting particle filtering with discrete-time observations: Asymptotic behaviour in the Gaussian case, in Stochastics in Finite and Infinite Dimensions: In Honor of Gopinath Kallianpur, T. Hida, R. L. Karandikar, H. Kunita, . S. Rajput, S. Watanabe, and J. Xiong, Eds. Boston, MA: Birkhäser, 2001, pp. 101-122.
    • P. Del Moral and J. Jacod, "Interacting particle filtering with discrete-time observations: Asymptotic behaviour in the Gaussian case," in Stochastics in Finite and Infinite Dimensions: In Honor of Gopinath Kallianpur, T. Hida, R. L. Karandikar, H. Kunita, ". S. Rajput, S. Watanabe, and J. Xiong, Eds. Boston, MA: Birkhäser, 2001, pp. 101-122.
  • 36
    • 84950943564 scopus 로고
    • Sequential imputation and Bayesian missing data problems
    • A. Kong, J. S. Liu, and W. Wong, "Sequential imputation and Bayesian missing data problems," J. Amer. Stat. Assoc., vol. 89, no. 278-288, pp. 590-599, 1994.
    • (1994) J. Amer. Stat. Assoc , vol.89 , Issue.278-288 , pp. 590-599
    • Kong, A.1    Liu, J.S.2    Wong, W.3
  • 37
    • 84878396693 scopus 로고
    • Monte-Carlo techniques in problems of optimal data processing
    • V. Zaritskii, V. Svetnik, and L. Shimelevich, "Monte-Carlo techniques in problems of optimal data processing," Autom. Remote Control, vol. 12, pp. 2015-2022, 1975.
    • (1975) Autom. Remote Control , vol.12 , pp. 2015-2022
    • Zaritskii, V.1    Svetnik, V.2    Shimelevich, L.3
  • 38
    • 0000243874 scopus 로고
    • Random sampling approach to state estimation in switching environment
    • H. Akashi and H. Kumamoto, "Random sampling approach to state estimation in switching environment," Automatica, vol. 13, pp. 429-434, 1977.
    • (1977) Automatica , vol.13 , pp. 429-434
    • Akashi, H.1    Kumamoto, H.2
  • 39
    • 0034355022 scopus 로고    scopus 로고
    • Mixture Kalman filter
    • R. Chen and J. S. Liu, "Mixture Kalman filter," J. Roy. Stat. Soc. Ser. B, vol. 62, no. 3, pp. 493-508, 2000.
    • (2000) J. Roy. Stat. Soc. Ser. B , vol.62 , Issue.3 , pp. 493-508
    • Chen, R.1    Liu, J.S.2
  • 40
    • 0003258788 scopus 로고    scopus 로고
    • N. Shephard and M. Pitt, Likelihood analysis of non-Gaussian measurement time series, Biometrika, 84, no. 3, pp. 653-667, 1997, erratum in 91, 249-250, 2004.
    • N. Shephard and M. Pitt, "Likelihood analysis of non-Gaussian measurement time series," Biometrika, vol. 84, no. 3, pp. 653-667, 1997, erratum in volume 91, 249-250, 2004.
  • 41
    • 0032221182 scopus 로고    scopus 로고
    • Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems
    • P. Del Moral, "Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems," Ann. Appl. Probab., vol. 8, pp. 69-95, 1998.
    • (1998) Ann. Appl. Probab , vol.8 , pp. 69-95
    • Del Moral, P.1
  • 42
    • 0036504051 scopus 로고    scopus 로고
    • A survey of convergence results on particle filtering methods for practitioners
    • Mar
    • D. Crisan and A. Doucet, "A survey of convergence results on particle filtering methods for practitioners," IEEE Trans. Signal Process., vol. 50, no. 3, pp. 736-746, Mar. 2002.
    • (2002) IEEE Trans. Signal Process , vol.50 , Issue.3 , pp. 736-746
    • Crisan, D.1    Doucet, A.2
  • 43
    • 21644457738 scopus 로고    scopus 로고
    • Central limit theorem for sequential monte carlo methods and its application to Bayesian inference
    • N. Chopin, "Central limit theorem for sequential monte carlo methods and its application to Bayesian inference," Ann. Stat. vol. 32, no. 6, pp. 2385-2411, 2004.
    • (2004) Ann. Stat , vol.32 , Issue.6 , pp. 2385-2411
    • Chopin, N.1
  • 45
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: Auxiliary particle filters
    • M. K. Pitt and N. Shephard, "Filtering via simulation: Auxiliary particle filters," J. Amer. Stat. Assoc., vol. 94, no. 446, pp. 590-599, 1999.
    • (1999) J. Amer. Stat. Assoc , vol.94 , Issue.446 , pp. 590-599
    • Pitt, M.K.1    Shephard, N.2
  • 46
    • 0037103812 scopus 로고    scopus 로고
    • A new sequential importance sampling methods and its application to the two-dimensional hydrophobic-hydrophilic model
    • J. L. Zhang and J. S. Liu, "A new sequential importance sampling methods and its application to the two-dimensional hydrophobic-hydrophilic model," J. Chem. Physics, vol. 117, no. 7, 2002.
    • (2002) J. Chem. Physics , vol.117 , Issue.7
    • Zhang, J.L.1    Liu, J.S.2
  • 47
    • 0038538420 scopus 로고    scopus 로고
    • C. Andrieu, M. Davy, and A. Doucet, BEfficient particle filtering for jump Markov systems. Application to time-varying autoregressions, IEEE Trans. Signal Process., 51, no. 7, pp. 1762-1770, Jul. 2003.
    • C. Andrieu, M. Davy, and A. Doucet, BEfficient particle filtering for jump Markov systems. Application to time-varying autoregressions," IEEE Trans. Signal Process., vol. 51, no. 7, pp. 1762-1770, Jul. 2003.
  • 48
    • 0008782869 scopus 로고    scopus 로고
    • Improvement strategies for monte carlo particle filters
    • A. Doucet, N. De Freitas, and N. Gordon, Eds. New York: Springer
    • S. Godsill and T. Clapp, "Improvement strategies for monte carlo particle filters," in Sequential Monte Carlo Methods in Practice, A. Doucet, N. De Freitas, and N. Gordon, Eds. New York: Springer, 2001.
    • (2001) Sequential Monte Carlo Methods in Practice
    • Godsill, S.1    Clapp, T.2
  • 49
    • 0036436369 scopus 로고    scopus 로고
    • Particle filtering for partially observed Gaussian state space models
    • C. Andrieu and A. Doucet, "Particle filtering for partially observed Gaussian state space models," J. Roy. Stat. Soc. Ser. B, vol. 64, no. 4, pp. 827-836, 2002.
    • (2002) J. Roy. Stat. Soc. Ser. B , vol.64 , Issue.4 , pp. 827-836
    • Andrieu, C.1    Doucet, A.2
  • 50
    • 27744564467 scopus 로고    scopus 로고
    • Complexity analysis of the marginalized particle filter
    • Nov
    • R. Karlsson, T. Schön, and F. Gustafsson, "Complexity analysis of the marginalized particle filter," IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4408-4411, Nov. 2005.
    • (2005) IEEE Trans. Signal Process , vol.53 , Issue.11 , pp. 4408-4411
    • Karlsson, R.1    Schön, T.2    Gustafsson, F.3
  • 51
    • 23844494086 scopus 로고    scopus 로고
    • Marginalized particle filters for mixed linear/nonlinear state-space models
    • T. Schön, F. Gustafsson, and P.-J. Nordlund, "Marginalized particle filters for mixed linear/nonlinear state-space models," IEEE Trans. Signal Process., vol. 53, no. 7, pp. 2279-2289, 2005.
    • (2005) IEEE Trans. Signal Process , vol.53 , Issue.7 , pp. 2279-2289
    • Schön, T.1    Gustafsson, F.2    Nordlund, P.-J.3
  • 52
    • 85024423711 scopus 로고
    • New results in linear filtering and prediction theory
    • R. E. Kalman and R. Bucy, "New results in linear filtering and prediction theory," J. Basic Eng., Trans. ASME, Series D, vol. 83, no. 3, pp. 95-108, 1961.
    • (1961) J. Basic Eng., Trans. ASME, Series D , vol.83 , Issue.3 , pp. 95-108
    • Kalman, R.E.1    Bucy, R.2
  • 53
    • 64349094082 scopus 로고    scopus 로고
    • C. P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd. New York: Springer, 2004.
    • C. P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd. New York: Springer, 2004.
  • 54
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Feb
    • L. R. Rabiner, "A tutorial on hidden Markov models and selected applications in speech recognition," Proc IEEE, vol. 77, no. 2, pp. 257-285, Feb. 1989.
    • (1989) Proc IEEE , vol.77 , Issue.2 , pp. 257-285
    • Rabiner, L.R.1
  • 56
    • 0035648076 scopus 로고    scopus 로고
    • Following a moving targetVMonte Carlo inference for dynamic Bayesian models
    • W. R. Gilks and C. Berzuini, "Following a moving targetVMonte Carlo inference for dynamic Bayesian models," J. Roy. Stat. Soc. Ser. B, vol. 63, no. 1, pp. 127-146, 2001.
    • (2001) J. Roy. Stat. Soc. Ser. B , vol.63 , Issue.1 , pp. 127-146
    • Gilks, W.R.1    Berzuini, C.2
  • 57
    • 2942624657 scopus 로고    scopus 로고
    • Resample-move filtering with cross-model jumps
    • A. Doucet, N. De Freitas, and N. Gordon, Eds. New York: Springer
    • C. Berzuini and W. R. Gilks, "Resample-move filtering with cross-model jumps," in Sequential Monte Carlo Methods in Practice, A. Doucet, N. De Freitas, and N. Gordon, Eds. New York: Springer, 2001.
    • (2001) Sequential Monte Carlo Methods in Practice
    • Berzuini, C.1    Gilks, W.R.2
  • 58
    • 0033466420 scopus 로고    scopus 로고
    • Sequential importance sampling for nonparametric bayes models: The next generation
    • S. N. MacEachern, M. Clyde, and J. Liu, "Sequential importance sampling for nonparametric bayes models: The next generation," Can J. Stat., vol. 27, pp. 251-267, 1999.
    • (1999) Can J. Stat , vol.27 , pp. 251-267
    • MacEachern, S.N.1    Clyde, M.2    Liu, J.3
  • 59
    • 0036929961 scopus 로고    scopus 로고
    • Markov chain Monte Carlo, sufficient statistics and particle filter
    • P. Fearnhead, "Markov chain Monte Carlo, sufficient statistics and particle filter," J. Comput. Graph. Stat., vol. 11, no. 4, pp. 848-862, 2002.
    • (2002) J. Comput. Graph. Stat , vol.11 , Issue.4 , pp. 848-862
    • Fearnhead, P.1
  • 60
    • 28044451749 scopus 로고    scopus 로고
    • BMCMC-based particle filtering for tracking a variable number of interacting targets, Nov
    • Z. Khan, T. Balch, and F. Dellaert, BMCMC-based particle filtering for tracking a variable number of interacting targets," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 11, pp. 1805-1918, Nov. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell , vol.27 , Issue.11 , pp. 1805-1918
    • Khan, Z.1    Balch, T.2    Dellaert, F.3
  • 61
    • 0001364414 scopus 로고    scopus 로고
    • Fixed-lag smoothing using sequential importance sampling
    • J. Bernardo, J. Berger, A. David, and A. Smith, Eds. Oxford, U.K, Oxford Univ. Press
    • T. C. Clapp and S. J. Godsill, "Fixed-lag smoothing using sequential importance sampling," in Bayesian Statistics VI, J. Bernardo, J. Berger, A. David, and A. Smith, Eds. Oxford, U.K.: Oxford Univ. Press, 1999, pp. 743-752.
    • (1999) Bayesian Statistics VI , pp. 743-752
    • Clapp, T.C.1    Godsill, S.J.2
  • 62
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior disiributions (with discussion)
    • L. Tierney, "Markov chains for exploring posterior disiributions (with discussion)," Ann. Stat., vol. 22, no. 4, pp. 1701-1762, 1994.
    • (1994) Ann. Stat , vol.22 , Issue.4 , pp. 1701-1762
    • Tierney, L.1
  • 63
    • 0033740817 scopus 로고    scopus 로고
    • Stochastic sampling algorithms for state estimation of jump Markov linear systems
    • Feb
    • A. Doucet, A. Logothetis, and V. Krishnamurthy, "Stochastic sampling algorithms for state estimation of jump Markov linear systems," IEEE Trans. Automat. Control, vol. 45, no. 2, pp. 188-202, Feb. 2000.
    • (2000) IEEE Trans. Automat. Control , vol.45 , Issue.2 , pp. 188-202
    • Doucet, A.1    Logothetis, A.2    Krishnamurthy, V.3
  • 64
    • 0035266886 scopus 로고    scopus 로고
    • Particle filters for state estimation of jump Markov linear systems
    • Mar
    • A. Doucet, N. Gordon, and V. Krishnamurthy, "Particle filters for state estimation of jump Markov linear systems," IEEE Trans. Signal Process., vol. 49, no. 3, pp. 613-624, Mar. 2001.
    • (2001) IEEE Trans. Signal Process , vol.49 , Issue.3 , pp. 613-624
    • Doucet, A.1    Gordon, N.2    Krishnamurthy, V.3
  • 65
    • 0003860037 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo in Practice
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhaher, Eds, London, U.K, Chapman & Hall
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhaher, Eds., Markov Chain Monte Carlo in Practice, ser. Interdisciplinary Statistics Series. London, U.K.: Chapman & Hall, 1996.
    • (1996) ser. Interdisciplinary Statistics Series
  • 66
    • 31344442144 scopus 로고    scopus 로고
    • Monte Carlo smoothing for non-linear time series
    • S. J. Godsill, A. Doucet, and M. West, "Monte Carlo smoothing for non-linear time series," J. Amer. Stat. Assoc., vol. 50, pp. 438-449, 2004.
    • (2004) J. Amer. Stat. Assoc , vol.50 , pp. 438-449
    • Godsill, S.J.1    Doucet, A.2    West, M.3
  • 67
    • 0001387339 scopus 로고    scopus 로고
    • State space and hidden markov models
    • O. E. Barndorff-Nielsen, D. R. Cox, and C. Klueppelberg, Eds. Boca Raton, FL: CRC
    • H. R. Künsch, "State space and hidden markov models," in Complex Stochastic Systems, O. E. Barndorff-Nielsen, D. R. Cox, and C. Klueppelberg, Eds. Boca Raton, FL: CRC, 2001, pp. 109-173.
    • (2001) Complex Stochastic Systems , pp. 109-173
    • Künsch, H.R.1
  • 68
    • 0036475402 scopus 로고    scopus 로고
    • Monte Carlo smoothing with application to audio signal enhancement
    • Feb
    • W. Fong, S. Godsill, A. Doucet, and M. West, "Monte Carlo smoothing with application to audio signal enhancement," IEEE Trans. Signal Process., vol. 50, no. 2, pp. 438-449, Feb. 2002.
    • (2002) IEEE Trans. Signal Process , vol.50 , Issue.2 , pp. 438-449
    • Fong, W.1    Godsill, S.2    Doucet, A.3    West, M.4
  • 69
    • 84950459387 scopus 로고
    • Non-Gaussian state space modeling of nonstationary time series
    • G. Kitagawa, "Non-Gaussian state space modeling of nonstationary time series," J. Amer. Stat. Assoc., vol. 82, no. 400, pp. 1023-1063, 1987.
    • (1987) J. Amer. Stat. Assoc , vol.82 , Issue.400 , pp. 1023-1063
    • Kitagawa, G.1
  • 70
    • 0032221057 scopus 로고    scopus 로고
    • Monte Carlo approximations for general state-space models
    • M. Hürzeler and H. R. Künsch, "Monte Carlo approximations for general state-space models," J. Comput. Graph. Stat., vol. 7, pp. 175-193, 1998.
    • (1998) J. Comput. Graph. Stat , vol.7 , pp. 175-193
    • Hürzeler, M.1    Künsch, H.R.2
  • 71
    • 0032136153 scopus 로고    scopus 로고
    • CONDENSATIONV conditional density propagation for visual tracking
    • M. Isard and A. Blake, "CONDENSATIONV conditional density propagation for visual tracking," Int. J. Comput. Vis., vol. 29, no. 1, pp. 5-28, 1998.
    • (1998) Int. J. Comput. Vis , vol.29 , Issue.1 , pp. 5-28
    • Isard, M.1    Blake, A.2
  • 72
    • 64349100482 scopus 로고    scopus 로고
    • M. Briers, A. Doucet, and S. Maskell, Smoothing algorithms for state-space models, Dept. Eng., Univ. Cambridge, Cambridge, U.K., Tech. Rep. TR-CUEDF-INFENG 498, 2004.
    • M. Briers, A. Doucet, and S. Maskell, "Smoothing algorithms for state-space models," Dept. Eng., Univ. Cambridge, Cambridge, U.K., Tech. Rep. TR-CUEDF-INFENG 498, 2004.
  • 74
    • 0008778775 scopus 로고    scopus 로고
    • Nonlinear and non-Gaussian state space modeling using sampling techniques
    • H. Tanizaki, "Nonlinear and non-Gaussian state space modeling using sampling techniques," Ann. Inst. Stat. Math., vol. 53, no. 1, pp. 63-81, 2001.
    • (2001) Ann. Inst. Stat. Math , vol.53 , Issue.1 , pp. 63-81
    • Tanizaki, H.1
  • 75
    • 0141714748 scopus 로고    scopus 로고
    • Maximum a posteriori sequence estimation using Monte Carlo particle filters
    • Mar
    • S. J. Godsill, A. Doucet, and M. West, "Maximum a posteriori sequence estimation using Monte Carlo particle filters," Ann. Inst. Stat. Math., vol. 53, no. 1, pp. 82-96, Mar. 2001.
    • (2001) Ann. Inst. Stat. Math , vol.53 , Issue.1 , pp. 82-96
    • Godsill, S.J.1    Doucet, A.2    West, M.3
  • 76
    • 84935113569 scopus 로고    scopus 로고
    • A. J. Viterbi, Error bounds for convolutional codes and an asymptotically optimal decoding algorithm, IEEE Trans. Inf. Theory, IT-13, no. 2, pp. 260-269, Apr. 1967.
    • A. J. Viterbi, "Error bounds for convolutional codes and an asymptotically optimal decoding algorithm," IEEE Trans. Inf. Theory, vol. IT-13, no. 2, pp. 260-269, Apr. 1967.
  • 77
    • 0012338718 scopus 로고    scopus 로고
    • A sequential particle filter method for static models
    • N. Chopin, "A sequential particle filter method for static models," Biometrika, vol. 89, pp. 539-552, 2002.
    • (2002) Biometrika , vol.89 , pp. 539-552
    • Chopin, N.1
  • 80
    • 84986753417 scopus 로고
    • An approach to time series smoothing and forecasting using the em algorithm
    • R. Shumway and D. Stoffer, "An approach to time series smoothing and forecasting using the em algorithm," J. Time Ser. Anal., vol. 3, no. 4, pp. 253-264, 1982.
    • (1982) J. Time Ser. Anal , vol.3 , Issue.4 , pp. 253-264
    • Shumway, R.1    Stoffer, D.2
  • 81
    • 38149048283 scopus 로고
    • MLE for partially observed diffusions: Direct maximization vs. the EM algorithm
    • F. Campillo and F. Le Gland, "MLE for partially observed diffusions: Direct maximization vs. the EM algorithm," Stoch. Proc. App., vol. 33, pp. 245-274, 1989.
    • (1989) Stoch. Proc. App , vol.33 , pp. 245-274
    • Campillo, F.1    Le Gland, F.2
  • 82
    • 0024668601 scopus 로고
    • A new method for evaluating the log-likelihood gradient, the Hessian, and the Fisher information matrix for linear dynamic systems
    • May
    • M. Segal and E. Weinstein, "A new method for evaluating the log-likelihood gradient, the Hessian, and the Fisher information matrix for linear dynamic systems," IEEE Trans. Inf. Theory, vol. 35, no. 3, pp. 682-687, May 1989.
    • (1989) IEEE Trans. Inf. Theory , vol.35 , Issue.3 , pp. 682-687
    • Segal, M.1    Weinstein, E.2
  • 83
    • 10944251332 scopus 로고    scopus 로고
    • Particle methods for change detection, system identification, and control
    • Mar
    • C. Andrieu, A. Doucet, S. S. Singh, and V. B. Tadic, "Particle methods for change detection, system identification, and control," Proc. IEEE, vol. 92, no. 3, pp. 423-438, Mar. 2004.
    • (2004) Proc. IEEE , vol.92 , Issue.3 , pp. 423-438
    • Andrieu, C.1    Doucet, A.2    Singh, S.S.3    Tadic, V.B.4
  • 84
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm (with discussion)," J. Roy. Stat. Soc. Ser. B, vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. Roy. Stat. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 85
    • 0024035304 scopus 로고
    • Exact filters for the estimation of the number of transitions of finite-state continuous-time Markov processes
    • Jul
    • O. Zeitouni and A. Dembo, "Exact filters for the estimation of the number of transitions of finite-state continuous-time Markov processes," IEEE Trans. Inf. Theory, vol. 34, no. 4, pp. 890-893, Jul. 1988.
    • (1988) IEEE Trans. Inf. Theory , vol.34 , Issue.4 , pp. 890-893
    • Zeitouni, O.1    Dembo, A.2
  • 87
    • 0141603121 scopus 로고    scopus 로고
    • Recursive computation of smoothed functionals of hidden Markovian processes using a particle approximation
    • O. Cappé, "Recursive computation of smoothed functionals of hidden Markovian processes using a particle approximation," Monte Carlo Methods Appl., vol. 7, no. 1-2, pp. 81-92, 2001.
    • (2001) Monte Carlo Methods Appl , vol.7 , Issue.1-2 , pp. 81-92
    • Cappé, O.1
  • 89
    • 0141803858 scopus 로고    scopus 로고
    • Parameter estimation in general state-space models using particle methods
    • A. Doucet and V. B. Tadic', "Parameter estimation in general state-space models using particle methods," Ann. Inst. Stat. Math., vol. 55, no. 2, pp. 409-422, 2003.
    • (2003) Ann. Inst. Stat. Math , vol.55 , Issue.2 , pp. 409-422
    • Doucet, A.1    Tadic', V.B.2
  • 90
    • 33947189186 scopus 로고    scopus 로고
    • BParticle based methods for parameter estimation and tracking: Numerical experiments, INRIA, Tech
    • Rep. PI-1604
    • J. Fichou, F. Le Gland, and L. Mevel, BParticle based methods for parameter estimation and tracking: Numerical experiments," INRIA, Tech. Rep. PI-1604, 2004.
    • (2004)
    • Fichou, J.1    Le Gland, F.2    Mevel, L.3
  • 93
    • 64349094892 scopus 로고    scopus 로고
    • On the use of particle filtering for maximum likelihood parameter estimation
    • presented at the, Antalya, Turkey
    • O. Cappé and E. Moulines, "On the use of particle filtering for maximum likelihood parameter estimation," presented at the Eur. Signal Processing Conf. (EUSIPCO), Antalya, Turkey, 2005.
    • (2005) Eur. Signal Processing Conf. (EUSIPCO)
    • Cappé, O.1    Moulines, E.2
  • 95
    • 21844506631 scopus 로고
    • Consistent and asymptotically normal parameter estimates for hidden Markov models
    • T. Rydén, "Consistent and asymptotically normal parameter estimates for hidden Markov models," Ann. Stat., vol. 22, no. 4, pp. 1884-1895, 1994.
    • (1994) Ann. Stat , vol.22 , Issue.4 , pp. 1884-1895
    • Rydén, T.1
  • 97
    • 0032347276 scopus 로고    scopus 로고
    • A self-organizing state-space model
    • G. Kitagawa, "A self-organizing state-space model," J. Amer. Stat. Assoc., vol. 93, no. 443, pp. 1203-1215, 1998.
    • (1998) J. Amer. Stat. Assoc , vol.93 , Issue.443 , pp. 1203-1215
    • Kitagawa, G.1
  • 98
    • 0001225908 scopus 로고    scopus 로고
    • Combined parameter and state estimation in simulation-based filtering
    • N. D. F. A. Doucet, and N. Gordon, Eds. New York: Springer
    • J. Liu and M. West, "Combined parameter and state estimation in simulation-based filtering," in Sequential Monte Carlo Methods in Practice, N. D. F. A. Doucet, and N. Gordon, Eds. New York: Springer, 2001.
    • (2001) Sequential Monte Carlo Methods in Practice
    • Liu, J.1    West, M.2
  • 99
    • 2942592979 scopus 로고    scopus 로고
    • Improved particle filters and smoothing
    • A. Doucet, N. De Freitas, and N. Gordon, Eds. New York: Springer
    • P. Stavropoulos and D. M. Titterington, "Improved particle filters and smoothing," in Sequential Monte Carlo Methods in Practice, A. Doucet, N. De Freitas, and N. Gordon, Eds. New York: Springer, 2001.
    • (2001) Sequential Monte Carlo Methods in Practice
    • Stavropoulos, P.1    Titterington, D.M.2
  • 100
    • 0003345004 scopus 로고    scopus 로고
    • Improving regularized particle filters
    • A. Doucet, N. De Freitas, and N. Gordon, Eds. New York: Springer
    • C. Musso, N. Oudjane, and F. Le Gland, "Improving regularized particle filters," in Sequential Monte Carlo Methods in Practice, A. Doucet, N. De Freitas, and N. Gordon, Eds. New York: Springer, 2001.
    • (2001) Sequential Monte Carlo Methods in Practice
    • Musso, C.1    Oudjane, N.2    Le Gland, F.3
  • 101
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • R. M. Neal, "Annealed importance sampling," Stat. Comput., vol. 11, no. 2,pp. 125-139, 2001.
    • (2001) Stat. Comput , vol.11 , Issue.2 , pp. 125-139
    • Neal, R.M.1
  • 103
    • 0036475891 scopus 로고    scopus 로고
    • Particle filters for state-space models with the presence of unknown static parameters
    • Feb
    • G. Storvik, "Particle filters for state-space models with the presence of unknown static parameters," IEEE Trans. Signal Process., vol. 50, no. 2, pp. 281-289, Feb. 2002.
    • (2002) IEEE Trans. Signal Process , vol.50 , Issue.2 , pp. 281-289
    • Storvik, G.1
  • 104
    • 64349106415 scopus 로고    scopus 로고
    • Practical filtering for stochastic volatility models
    • A. Harvey, S. J. Koopman, and N. Shephard, Eds. Cambridge, U.K, Cambridge Univ. Press
    • J. Stroud, N. Polson, and P. Müller, "Practical filtering for stochastic volatility models," in State Space and Unobserved Component Models, A. Harvey, S. J. Koopman, and N. Shephard, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2003.
    • (2003) State Space and Unobserved Component Models
    • Stroud, J.1    Polson, N.2    Müller, P.3
  • 105
    • 33645336034 scopus 로고    scopus 로고
    • A uniformly convergent adaptive particle filter
    • A. Papavasiliou, "A uniformly convergent adaptive particle filter," J. Appl. Probab., vol. 42, no. 4, pp. 1053-1068, 2005.
    • (2005) J. Appl. Probab , vol.42 , Issue.4 , pp. 1053-1068
    • Papavasiliou, A.1
  • 106
    • 0142095800 scopus 로고    scopus 로고
    • Population-based Monte Carlo algorithms
    • Y. Iba, "Population-based Monte Carlo algorithms," Trans. Jpn. Soc. Artif. Intell., vol. 16, no. 2, pp. 279-286, 2000.
    • (2000) Trans. Jpn. Soc. Artif. Intell , vol.16 , Issue.2 , pp. 279-286
    • Iba, Y.1
  • 107
    • 0035600220 scopus 로고    scopus 로고
    • Extended ensemble Monte Carlo
    • Y. Iba, "Extended ensemble Monte Carlo," Int. J. Mod. Phys. C, vol. 12, no. 5, pp. 623-656, 2001.
    • (2001) Int. J. Mod. Phys. C , vol.12 , Issue.5 , pp. 623-656
    • Iba, Y.1
  • 108
    • 0037527978 scopus 로고    scopus 로고
    • 108] G. Ridgeway and D. Madigan, A sequential Monte Carlo method for Bayesian analysis of massive datasets, Data Mining Knowl. Discovery, 7, no. 3, pp. 301-319, 2003.
    • "108] G. Ridgeway and D. Madigan, "A sequential Monte Carlo method for Bayesian analysis of massive datasets," Data Mining Knowl. Discovery, vol. 7, no. 3, pp. 301-319, 2003.
  • 109
    • 34147115328 scopus 로고    scopus 로고
    • A one-pass sequential Monte Carlo method for Bayesian analysis of massive datasets
    • S. Balakrishnan and D. Madigan, "A one-pass sequential Monte Carlo method for Bayesian analysis of massive datasets," Bayesian Anal. vol. 1, no. 2, pp. 345-362, 2006.
    • (2006) Bayesian Anal , vol.1 , Issue.2 , pp. 345-362
    • Balakrishnan, S.1    Madigan, D.2
  • 111
    • 0033436531 scopus 로고    scopus 로고
    • Adaptive proposal distribution for random walk Metropolis algorithm
    • H. Haario, E. Saksman, and J. Tamminen, "Adaptive proposal distribution for random walk Metropolis algorithm," Comput. Stat. vol. 14, pp. 375-395, 1999.
    • (1999) Comput. Stat , vol.14 , pp. 375-395
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 112
    • 49449113684 scopus 로고    scopus 로고
    • Convergence of adaptive mixtures of importance sampling schemes
    • no. 12007
    • R. Douc, A. Guillin, J.-M. Merin, and C. P. Robert, "Convergence of adaptive mixtures of importance sampling schemes," Ann. Stat., vol. 35, no. 12007, to appear.
    • Ann. Stat , vol.35
    • Douc, R.1    Guillin, A.2    Merin, J.-M.3    Robert, C.P.4
  • 115
    • 30844444778 scopus 로고    scopus 로고
    • Genealogical particle analysis of rare events
    • P. Del Moral and J. Garnier, "Genealogical particle analysis of rare events," Ann. Appl. Probab., vol. 15, no. 4, pp. 2496-2534, 2005.
    • (2005) Ann. Appl. Probab , vol.15 , Issue.4 , pp. 2496-2534
    • Del Moral, P.1    Garnier, J.2
  • 116
    • 33846810987 scopus 로고    scopus 로고
    • Limit theorems for multilevel splitting algorithms in the simulation of rare events
    • presented at the, Orlando, FL
    • F. Cerou, P. Del Moral, F. Le Gland, and P. Lezaud, "Limit theorems for multilevel splitting algorithms in the simulation of rare events," presented at the 37th Winter Simulation Conf., Orlando, FL, 2005.
    • (2005) 37th Winter Simulation Conf
    • Cerou, F.1    Del Moral, P.2    Le Gland, F.3    Lezaud, P.4
  • 118
    • 64349096942 scopus 로고    scopus 로고
    • A. Jasra, D. A. Stephens, and C. C. Holmes, On population-based simulation for static inference, Dept. Math., Imperial College, London, U.K., 2005, Tech. Rep.
    • A. Jasra, D. A. Stephens, and C. C. Holmes, "On population-based simulation for static inference," Dept. Math., Imperial College, London, U.K., 2005, Tech. Rep.
  • 119
    • 33947698297 scopus 로고    scopus 로고
    • A. Johansen, A. Doucet, and M. Davy, Maximum likelihood parameter estimation for latent variable models using sequential Monte Carlo, in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 2006, pp. III-640-III-643.
    • A. Johansen, A. Doucet, and M. Davy, "Maximum likelihood parameter estimation for latent variable models using sequential Monte Carlo," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 2006, pp. III-640-III-643.
  • 122
    • 64349106876 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for multi-target filtering with random finite sets
    • B.-N. Vo, S. S. Singh, and A. Doucet, "Sequential Monte Carlo methods for multi-target filtering with random finite sets," IEEE Aerosp. Electron. Syst. Mag., 2007.
    • (2007) IEEE Aerosp. Electron. Syst. Mag
    • Vo, B.-N.1    Singh, S.S.2    Doucet, A.3
  • 123
    • 33646690994 scopus 로고    scopus 로고
    • Exact and efficient likelihood-based estimation for discretely observed diffusions processes
    • A. Beskos, O. Papaspiliopoulos, G. O. Roberts, and P. Fearnhead, "Exact and efficient likelihood-based estimation for discretely observed diffusions processes," J. Roy. Stat. Soc. Ser. B, vol. 68, no. 2, pp. 1-29, 2006.
    • (2006) J. Roy. Stat. Soc. Ser. B , vol.68 , Issue.2 , pp. 1-29
    • Beskos, A.1    Papaspiliopoulos, O.2    Roberts, G.O.3    Fearnhead, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.