메뉴 건너뛰기




Volumn 1, Issue 2, 2006, Pages 345-362

A one-pass sequential monte carlo method for bayesian analysis of massive datasets

Author keywords

Massive datasets; One pass; Sequential monte carlo

Indexed keywords


EID: 34147115328     PISSN: 19360975     EISSN: 19316690     Source Type: Journal    
DOI: 10.1214/06-BA112     Document Type: Article
Times cited : (30)

References (22)
  • 1
    • 0022195564 scopus 로고
    • Kernel Density Estimation for Compositional Data
    • 355
    • Aitchison, J. and Lauder, I. J. (1985). "Kernel Density Estimation for Compositional Data." Applied Statistics, 34(2): 129-137. 355
    • (1985) Applied Statistics , vol.34 , Issue.2 , pp. 129-137
    • Aitchison, J.1    Lauder, I.J.2
  • 4
    • 0012338718 scopus 로고    scopus 로고
    • A sequential particle filter method for static models
    • 345, 346
    • Chopin, N. (2002b). "A sequential particle filter method for static models." Biometrika, 89(3): 539-552. 345, 346
    • (2002) Biometrika , vol.89 , Issue.3 , pp. 539-552
    • Chopin, N.1
  • 6
    • 0038931405 scopus 로고    scopus 로고
    • Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system (with discussion)
    • 346
    • DuMouchel, W. (1999). "Bayesian data mining in large frequency tables, with an appli- cation to the FDA spontaneous reporting system (with discussion)." The American Statistician, 53(3): 177-190. 346
    • (1999) The American Statistician , vol.53 , Issue.3 , pp. 177-190
    • DuMouchel, W.1
  • 7
    • 0141460296 scopus 로고    scopus 로고
    • Adaptive sparseness using Jeffreys prior
    • T. G. Dietterich, S. B. and Ghahramani, Z. (eds.), Vancouver, Canada: MIT Press. 352
    • Figueiredo, M. (2001). "Adaptive sparseness using Jeffreys prior."In T. G. Dietterich, S. B. and Ghahramani, Z. (eds.), Advances in Neural Information Processing Systems, (NIPS 14). Vancouver, Canada: MIT Press. 352
    • (2001) Advances in Neural Information Processing Systems, (NIPS 14)
    • Figueiredo, M.1
  • 8
    • 0002219642 scopus 로고    scopus 로고
    • Learning Bayesian Network Structures from Massive Datasets: The Sparse Candidate Algorithm
    • San Francisco, USA: Morgan Kaufmann. 346
    • Friedman, N., Nachman, I., and Peer, D. (1999). "Learning Bayesian Network Struc- tures from Massive Datasets: The Sparse Candidate Algorithm." In 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), 206-215. San Fran- cisco, USA: Morgan Kaufmann. 346
    • (1999) 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99) , pp. 206-215
    • Friedman, N.1    Nachman, I.2    Peer, D.3
  • 10
    • 0001667705 scopus 로고
    • Bayesian inference in econometric models using Monte Carlo integration
    • 346, 352
    • Geweke, J. (1989). "Bayesian inference in econometric models using Monte Carlo inte- gration."Econometrica, 24: 1317-1399. 346, 352
    • (1989) Econometrica , vol.24 , pp. 1317-1399
    • Geweke, J.1
  • 11
    • 0035648076 scopus 로고    scopus 로고
    • Following a moving target Monte Carlo inference for dynamic Bayesian models
    • 348, 350
    • Gilks, W. and Berzuini, C. (2001). "Following a moving target - Monte Carlo inference for dynamic Bayesian models." Journal of the Royal Statistical Society B, 63(1): 127-146. 348, 350
    • (2001) Journal of the Royal Statistical Society B , vol.63 , Issue.1 , pp. 127-146
    • Gilks, W.1    Berzuini, C.2
  • 14
    • 0033438365 scopus 로고    scopus 로고
    • A central limit theorem for nonlinear filtering using interacting particle systems
    • 350
    • Moral, P. D. and Guionnet, A. (1999). "A central limit theorem for nonlinear filtering using interacting particle systems." Annals of Applied Probability, 9: 275-297. 350
    • (1999) Annals of Applied Probability , vol.9 , pp. 275-297
    • Moral, P.D.1    Guionnet, A.2
  • 15
    • 0035628554 scopus 로고    scopus 로고
    • Hierarchical Model-based Clustering For Large Datasets
    • 346
    • Posse, C. (2001). "Hierarchical Model-based Clustering For Large Datasets." Journal of Computational and Graphical Statistics, 10(3): 464-486. 346
    • (2001) Journal of Computational and Graphical Statistics , vol.10 , Issue.3 , pp. 464-486
    • Posse, C.1
  • 16
    • 0036532775 scopus 로고    scopus 로고
    • Bayesian Clustering by Dynamics
    • 355
    • Ramoni, M., Sebastiani, P., and Cohen, P. (2002). "Bayesian Clustering by Dynamics." Machine Learning, 47(1): 91-121. 355
    • (2002) Machine Learning , vol.47 , Issue.1 , pp. 91-121
    • Ramoni, M.1    Sebastiani, P.2    Cohen, P.3
  • 17
    • 0003516479 scopus 로고    scopus 로고
    • Technical report, Microsoft Research. Technical Report MSR-TR-97-24. 355
    • Ridgeway, G. (1997). "Finite discrete Markov process clustering." Technical report, Microsoft Research. Technical Report MSR-TR-97-24. 355
    • (1997) Finite discrete Markov process clustering
    • Ridgeway, G.1
  • 18
    • 0037527978 scopus 로고    scopus 로고
    • A Sequential Monte Carlo Method for Bayesian Analysis of Massive Datasets
    • 345, 346, 347, 348, 349, 350, 352, 353, 355, 356
    • Ridgeway, G. and Madigan, D. (2002). "A Sequential Monte Carlo Method for Bayesian Analysis of Massive Datasets." Journal of Knowledge Discovery and Data Mining, 7: 301-319. 345, 346, 347, 348, 349, 350, 352, 353, 355, 356
    • (2002) Journal of Knowledge Discovery and Data Mining , vol.7 , pp. 301-319
    • Ridgeway, G.1    Madigan, D.2
  • 19
    • 0141484919 scopus 로고
    • Maximum likelihood estimation of dirichlet distributions
    • 355
    • Ronning, G. (1989). "Maximum likelihood estimation of dirichlet distributions." Journal of Statistical Computation and Simulation, 32(4): 215-221. 355
    • (1989) Journal of Statistical Computation and Simulation , vol.32 , Issue.4 , pp. 215-221
    • Ronning, G.1
  • 20
    • 84867165154 scopus 로고
    • Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. New York, NY: Chapman Hall. 352
    • Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Mono- graphs on Statistics and Applied Probability. New York, NY: Chapman Hall. 352
    • (1986)
    • Silverman, B.W.1
  • 21
    • 2942592979 scopus 로고    scopus 로고
    • Improved particle filters and smoothing
    • A. Doucet, N. d. F. and Gordon., N. (eds.), New York, NY: Springer-Verlag. 352
    • Stavropoulos, P. and Titterington, D. M. (2001). "Improved particle filters and smooth- ing." In A. Doucet, N. d. F. and Gordon., N. (eds.), Sequential Monte Carlo Methods in Practice. New York, NY: Springer-Verlag. 352
    • (2001) Sequential Monte Carlo Methods in Practice
    • Stavropoulos, P.1    Titterington, D.M.2
  • 22
    • 0001287271 scopus 로고
    • Regression selection and shrinkage via the lasso, Journal of the Royal Statistical Society
    • 352
    • Tibshirani, R. (1995). "Regression selection and shrinkage via the lasso." Journal of the Royal Statistical Society, Series B, 57: 267-288. 352
    • (1995) Series B , vol.57 , pp. 267-288
    • Tibshirani, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.