-
1
-
-
0022195564
-
Kernel Density Estimation for Compositional Data
-
355
-
Aitchison, J. and Lauder, I. J. (1985). "Kernel Density Estimation for Compositional Data." Applied Statistics, 34(2): 129-137. 355
-
(1985)
Applied Statistics
, vol.34
, Issue.2
, pp. 129-137
-
-
Aitchison, J.1
Lauder, I.J.2
-
2
-
-
0003482057
-
-
Technical report, Microsoft Research. Technical Report MSR-TR-00-18. 355
-
Cadez, I., Heckerman, D., Meek, C., Smyth, P., and White, S. (2000). "Visualization of navigation patterns on a Web site using model-based clustering." Technical report, Microsoft Research. Technical Report MSR-TR-00-18. 355
-
(2000)
Visualization of navigation patterns on a Web site using model-based clustering
-
-
Cadez, I.1
Heckerman, D.2
Meek, C.3
Smyth, P.4
White, S.5
-
4
-
-
0012338718
-
A sequential particle filter method for static models
-
345, 346
-
Chopin, N. (2002b). "A sequential particle filter method for static models." Biometrika, 89(3): 539-552. 345, 346
-
(2002)
Biometrika
, vol.89
, Issue.3
, pp. 539-552
-
-
Chopin, N.1
-
5
-
-
0003665481
-
-
New York, NY: Springer-Verlag. 348
-
Doucet, A., de Freitas, N., and Gordon, N. (2001). Sequential Monte Carlo Methods in Practice. New York, NY: Springer-Verlag. 348
-
(2001)
Sequential Monte Carlo Methods in Practice
-
-
Doucet, A.1
de Freitas, N.2
Gordon, N.3
-
6
-
-
0038931405
-
Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system (with discussion)
-
346
-
DuMouchel, W. (1999). "Bayesian data mining in large frequency tables, with an appli- cation to the FDA spontaneous reporting system (with discussion)." The American Statistician, 53(3): 177-190. 346
-
(1999)
The American Statistician
, vol.53
, Issue.3
, pp. 177-190
-
-
DuMouchel, W.1
-
7
-
-
0141460296
-
Adaptive sparseness using Jeffreys prior
-
T. G. Dietterich, S. B. and Ghahramani, Z. (eds.), Vancouver, Canada: MIT Press. 352
-
Figueiredo, M. (2001). "Adaptive sparseness using Jeffreys prior."In T. G. Dietterich, S. B. and Ghahramani, Z. (eds.), Advances in Neural Information Processing Systems, (NIPS 14). Vancouver, Canada: MIT Press. 352
-
(2001)
Advances in Neural Information Processing Systems, (NIPS 14)
-
-
Figueiredo, M.1
-
8
-
-
0002219642
-
Learning Bayesian Network Structures from Massive Datasets: The Sparse Candidate Algorithm
-
San Francisco, USA: Morgan Kaufmann. 346
-
Friedman, N., Nachman, I., and Peer, D. (1999). "Learning Bayesian Network Struc- tures from Massive Datasets: The Sparse Candidate Algorithm." In 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), 206-215. San Fran- cisco, USA: Morgan Kaufmann. 346
-
(1999)
15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99)
, pp. 206-215
-
-
Friedman, N.1
Nachman, I.2
Peer, D.3
-
10
-
-
0001667705
-
Bayesian inference in econometric models using Monte Carlo integration
-
346, 352
-
Geweke, J. (1989). "Bayesian inference in econometric models using Monte Carlo inte- gration."Econometrica, 24: 1317-1399. 346, 352
-
(1989)
Econometrica
, vol.24
, pp. 1317-1399
-
-
Geweke, J.1
-
11
-
-
0035648076
-
Following a moving target Monte Carlo inference for dynamic Bayesian models
-
348, 350
-
Gilks, W. and Berzuini, C. (2001). "Following a moving target - Monte Carlo inference for dynamic Bayesian models." Journal of the Royal Statistical Society B, 63(1): 127-146. 348, 350
-
(2001)
Journal of the Royal Statistical Society B
, vol.63
, Issue.1
, pp. 127-146
-
-
Gilks, W.1
Berzuini, C.2
-
12
-
-
84950943564
-
Sequential imputation and Bayesian missing data problems
-
348
-
Kong, A., Liu, J., and Wong, W. (1994). "Sequential imputation and Bayesian missing data problems." Journal of the American Statistical Association, 89: 278-288. 348
-
(1994)
Journal of the American Statistical Association
, vol.89
, pp. 278-288
-
-
Kong, A.1
Liu, J.2
Wong, W.3
-
13
-
-
4344621370
-
-
New York, NY: Springer-Verlag., 349, 355, 358
-
Liu, J. and West, M. (2001). Combined parameter and state estimation in simulation- based filtering, 197-224. New York, NY: Springer-Verlag. 349, 355, 358
-
(2001)
Combined parameter and state estimation in simulationbased filtering
, pp. 197-224
-
-
Liu, J.1
West, M.2
-
14
-
-
0033438365
-
A central limit theorem for nonlinear filtering using interacting particle systems
-
350
-
Moral, P. D. and Guionnet, A. (1999). "A central limit theorem for nonlinear filtering using interacting particle systems." Annals of Applied Probability, 9: 275-297. 350
-
(1999)
Annals of Applied Probability
, vol.9
, pp. 275-297
-
-
Moral, P.D.1
Guionnet, A.2
-
15
-
-
0035628554
-
Hierarchical Model-based Clustering For Large Datasets
-
346
-
Posse, C. (2001). "Hierarchical Model-based Clustering For Large Datasets." Journal of Computational and Graphical Statistics, 10(3): 464-486. 346
-
(2001)
Journal of Computational and Graphical Statistics
, vol.10
, Issue.3
, pp. 464-486
-
-
Posse, C.1
-
16
-
-
0036532775
-
Bayesian Clustering by Dynamics
-
355
-
Ramoni, M., Sebastiani, P., and Cohen, P. (2002). "Bayesian Clustering by Dynamics." Machine Learning, 47(1): 91-121. 355
-
(2002)
Machine Learning
, vol.47
, Issue.1
, pp. 91-121
-
-
Ramoni, M.1
Sebastiani, P.2
Cohen, P.3
-
17
-
-
0003516479
-
-
Technical report, Microsoft Research. Technical Report MSR-TR-97-24. 355
-
Ridgeway, G. (1997). "Finite discrete Markov process clustering." Technical report, Microsoft Research. Technical Report MSR-TR-97-24. 355
-
(1997)
Finite discrete Markov process clustering
-
-
Ridgeway, G.1
-
18
-
-
0037527978
-
A Sequential Monte Carlo Method for Bayesian Analysis of Massive Datasets
-
345, 346, 347, 348, 349, 350, 352, 353, 355, 356
-
Ridgeway, G. and Madigan, D. (2002). "A Sequential Monte Carlo Method for Bayesian Analysis of Massive Datasets." Journal of Knowledge Discovery and Data Mining, 7: 301-319. 345, 346, 347, 348, 349, 350, 352, 353, 355, 356
-
(2002)
Journal of Knowledge Discovery and Data Mining
, vol.7
, pp. 301-319
-
-
Ridgeway, G.1
Madigan, D.2
-
19
-
-
0141484919
-
Maximum likelihood estimation of dirichlet distributions
-
355
-
Ronning, G. (1989). "Maximum likelihood estimation of dirichlet distributions." Journal of Statistical Computation and Simulation, 32(4): 215-221. 355
-
(1989)
Journal of Statistical Computation and Simulation
, vol.32
, Issue.4
, pp. 215-221
-
-
Ronning, G.1
-
20
-
-
84867165154
-
-
Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. New York, NY: Chapman Hall. 352
-
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Mono- graphs on Statistics and Applied Probability. New York, NY: Chapman Hall. 352
-
(1986)
-
-
Silverman, B.W.1
-
21
-
-
2942592979
-
Improved particle filters and smoothing
-
A. Doucet, N. d. F. and Gordon., N. (eds.), New York, NY: Springer-Verlag. 352
-
Stavropoulos, P. and Titterington, D. M. (2001). "Improved particle filters and smooth- ing." In A. Doucet, N. d. F. and Gordon., N. (eds.), Sequential Monte Carlo Methods in Practice. New York, NY: Springer-Verlag. 352
-
(2001)
Sequential Monte Carlo Methods in Practice
-
-
Stavropoulos, P.1
Titterington, D.M.2
-
22
-
-
0001287271
-
Regression selection and shrinkage via the lasso, Journal of the Royal Statistical Society
-
352
-
Tibshirani, R. (1995). "Regression selection and shrinkage via the lasso." Journal of the Royal Statistical Society, Series B, 57: 267-288. 352
-
(1995)
Series B
, vol.57
, pp. 267-288
-
-
Tibshirani, R.1
|