-
1
-
-
0141603121
-
Recursive computation of smoothed functionals of hidden Markovian processes using a particle approximation
-
O. Cappé. Recursive computation of smoothed functionals of hidden Markovian processes using a particle approximation. Monte Carlo Methods Appl., 7(1-2):81-92, 2001.
-
(2001)
Monte Carlo Methods Appl.
, vol.7
, Issue.1-2
, pp. 81-92
-
-
Cappé, O.1
-
3
-
-
0002241694
-
The SEM algorithm: A probabilistic teacher algorithm derived from the em algorithm for the mixture problem
-
G. Celeux and J. Diebolt. The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Comput. Statist., 2:73-82, 1985.
-
(1985)
Comput. Statist.
, vol.2
, pp. 73-82
-
-
Celeux, G.1
Diebolt, J.2
-
4
-
-
12444272206
-
Stochastic particle methods for linear tangent filtering equations
-
J.-L. Menaldi, E. Rofman, and A. Sulem, editors. IOS Press
-
F. Cérou, F. Le Gland, and N. Newton. Stochastic particle methods for linear tangent filtering equations. In J.-L. Menaldi, E. Rofman, and A. Sulem, editors, Optimal Control and PDE's - Innovations and Applications, in Honor of Alain Bensoussan's 60th Anniversary, pages 231-240. IOS Press, 2001.
-
(2001)
Optimal Control and PDE's - Innovations and Applications, in Honor of Alain Bensoussan's 60th Anniversary
, pp. 231-240
-
-
Cérou, F.1
Le Gland, F.2
Newton, N.3
-
5
-
-
0036504051
-
A survey of convergence results on particle filtering methods for practitioners
-
D. Crisan and A. Doucet. A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Process., 50(3):736-746, 2002.
-
(2002)
IEEE Trans. Signal Process.
, vol.50
, Issue.3
, pp. 736-746
-
-
Crisan, D.1
Doucet, A.2
-
7
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
with discussion
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B, 39(1):1-38 (with discussion), 1977.
-
(1977)
J. Roy. Statist. Soc. Ser. B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
9
-
-
0001460136
-
On sequential Monte-Carlo sampling methods for Bayesian filtering
-
A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte-Carlo sampling methods for Bayesian filtering. Stat. Comput., 10:197-208, 2000.
-
(2000)
Stat. Comput.
, vol.10
, pp. 197-208
-
-
Doucet, A.1
Godsill, S.2
Andrieu, C.3
-
10
-
-
0141803858
-
Parameter estimation in general state-space models using particle methods
-
A. Doucet and V. B. Tadić. Parameter estimation in general state-space models using particle methods. Ann. Inst. Statist. Math., 55(2):409-422, 2003.
-
(2003)
Ann. Inst. Statist. Math.
, vol.55
, Issue.2
, pp. 409-422
-
-
Doucet, A.1
Tadić, V.B.2
-
11
-
-
0032221057
-
Monte Carlo approximations for general state-space models
-
M. Hürzeler and H. R. Künsch. Monte Carlo approximations for general state-space models. J. Comput. Graph. Statist., 7:175-193, 1998.
-
(1998)
J. Comput. Graph. Statist.
, vol.7
, pp. 175-193
-
-
Hürzeler, M.1
Künsch, H.R.2
-
12
-
-
1542427941
-
Filtering via simulation: Auxiliary particle filters
-
M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters. J. Am. Statist. Assoc., 94(446):590-599, 1999.
-
(1999)
J. Am. Statist. Assoc.
, vol.94
, Issue.446
, pp. 590-599
-
-
Pitt, M.K.1
Shephard, N.2
|