-
1
-
-
85017310179
-
Sequential MCMC for Bayesian model selection
-
Andrieu, C., De Freitas, J.F.G. and Doucet, A. (1999). Sequential MCMC for Bayesian model selection, Proceedings of the IEEE Workshop on Higher Order Statistics, 130-134.
-
(1999)
Proceedings of the IEEE Workshop on Higher Order Statistics
, pp. 130-134
-
-
Andrieu, C.1
De Freitas, J.F.G.2
Doucet, A.3
-
2
-
-
0003778897
-
-
Springer, New York
-
Benveniste, A., Métivier, M. and Priouret, P. (1990). Adaptive Algorithms and Stochastic Approximation, Springer, New York.
-
(1990)
Adaptive Algorithms and Stochastic Approximation
-
-
Benveniste, A.1
Métivier, M.2
Priouret, P.3
-
3
-
-
12444272206
-
Stochastic particle methods for linear tangent equations
-
eds.J. Menaldi,E. Rofman andA. Sulem, IOS Press, Amsterdam
-
Cérou, F., LeGland, F. and Newton, N. J. (2001). Stochastic particle methods for linear tangent equations, Optimal Control and PDE's - Innovations and Applications (eds. J. Menaldi, E. Rofman and A. Sulem), 231-240, IOS Press, Amsterdam.
-
(2001)
Optimal Control and PDE's - Innovations and Applications
, pp. 231-240
-
-
Cérou, F.1
Legland, F.2
Newton, N.J.3
-
4
-
-
0001460136
-
On sequential Monte Carlo sampling methods for Bayesian filtering
-
Doucet, A., Godsill, S. J. and Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering, Statist. Comput., 10, 197-208.
-
(2000)
Statist. Comput.
, vol.10
, pp. 197-208
-
-
Doucet, A.1
Godsill, S.J.2
Andrieu, C.3
-
5
-
-
0003665481
-
-
Springer, New York
-
Doucet, A., de Freitas, J. F. G. and Gordon, N. J. (eds.) (2001). Sequential Monte Carlo Methods in Practice, Springer, New York.
-
(2001)
Sequential Monte Carlo Methods in Practice
-
-
Doucet, A.1
De Freitas, J.F.G.2
Gordon, N.J.3
-
6
-
-
0034354798
-
Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives (with discussion)
-
Durbin, J. and Koopman, S. J. (2000). Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives (with discussion), J. Roy. Statist. Soc. Ser. B, 62, 3-56.
-
(2000)
J. Roy. Statist. Soc. Ser. B
, vol.62
, pp. 3-56
-
-
Durbin, J.1
Koopman, S.J.2
-
7
-
-
0035648076
-
Following a moving target - Monte Carlo inference for dynamic Bayesian models
-
Gilks, W. R. and Berzuini, C. (2001). Following a moving target - Monte Carlo inference for dynamic Bayesian models, J. Roy. Statist. Soc. Ser. B, 63, 127-146.
-
(2001)
J. Roy. Statist. Soc. Ser. B
, vol.63
, pp. 127-146
-
-
Gilks, W.R.1
Berzuini, C.2
-
8
-
-
0027580559
-
Novel approach to nonlinear non-Gaussian Bayesian state estimation
-
Gordon, N. J., Salmond, D. J. and Smith, A. F. M. (1993). Novel approach to nonlinear non-Gaussian Bayesian state estimation, IEE Proceedings F, 140, 107-113.
-
(1993)
IEE Proceedings F
, vol.140
, pp. 107-113
-
-
Gordon, N.J.1
Salmond, D.J.2
Smith, A.F.M.3
-
9
-
-
84962984403
-
Multivariate stochastic variance models
-
Harvey, A. C., Ruiz, E. and Shephard, N. (1994). Multivariate stochastic variance models, Rev. Econom. Stud., 61, 247-264.
-
(1994)
Rev. Econom. Stud.
, vol.61
, pp. 247-264
-
-
Harvey, A.C.1
Ruiz, E.2
Shephard, N.3
-
10
-
-
0031294907
-
Monte Carlo filter using the genetic algorithm operators
-
Higuchi, T. (1997). Monte Carlo filter using the genetic algorithm operators, J. Statist. Comput. Simulation, 59, 1-23.
-
(1997)
J. Statist. Comput. Simulation
, vol.59
, pp. 1-23
-
-
Higuchi, T.1
-
13
-
-
0030304310
-
Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
-
Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models, J. Comput. Graph. Statist., 5, 1-25.
-
(1996)
J. Comput. Graph. Statist.
, vol.5
, pp. 1-25
-
-
Kitagawa, G.1
-
14
-
-
0032347276
-
A self-organizing state-space model
-
Kitagawa, G. (1998). A self-organizing state-space model, J. Amer. Statist. Assoc., 93, 1203-1215.
-
(1998)
J. Amer. Statist. Assoc.
, vol.93
, pp. 1203-1215
-
-
Kitagawa, G.1
-
15
-
-
0001627420
-
Smoothness Priors Analysis of Time Series
-
Springer, New York
-
Kitagawa, G. and Gersch, W. (1996). Smoothness Priors Analysis of Time Series, Lecture Notes in Statist., Vol. 116, Springer, New York.
-
(1996)
Lecture Notes in Statist.
, vol.116
-
-
Kitagawa, G.1
Gersch, W.2
-
17
-
-
0032359151
-
Sequential Monte Carlo methods for dynamic systems
-
Liu, J. S. and Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems, J. Amer. Statist. Assoc., 93, 1032-1043.
-
(1998)
J. Amer. Statist. Assoc.
, vol.93
, pp. 1032-1043
-
-
Liu, J.S.1
Chen, R.2
-
18
-
-
0001225908
-
Combined parameter and state estimation in simulation-based filtering
-
eds. A. Doucet, J. F. G. de Freitas and N. J. Gordon, Springer, New York
-
Liu, J. and West, M. (2001). Combined parameter and state estimation in simulation-based filtering, Sequential Monte Carlo Methods in Practice (eds. A. Doucet, J. F. G. de Freitas and N. J. Gordon), 197-223, Springer, New York.
-
(2001)
Sequential Monte Carlo Methods in Practice
, pp. 197-223
-
-
Liu, J.1
West, M.2
-
20
-
-
1542427941
-
Filtering via simulation: Auxiliary particle filter
-
Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filter, J. Amer. Statist. Assoc., 94, 590-599.
-
(1999)
J. Amer. Statist. Assoc.
, vol.94
, pp. 590-599
-
-
Pitt, M.K.1
Shephard, N.2
-
21
-
-
0034439674
-
Asymptotic analysis of stochastic approximation algorithms under violated Kushner-Clark conditions
-
Tadić, V. B. (2000). Asymptotic analysis of stochastic approximation algorithms under violated Kushner-Clark conditions, Proceedings of 39th IEEE Conference on Decision and Control, 2875-2880.
-
(2000)
Proceedings of 39th IEEE Conference on Decision and Control
, pp. 2875-2880
-
-
Tadić, V.B.1
|