메뉴 건너뛰기




Volumn 19, Issue 1, 2004, Pages 118-127

Computational advances for and from Bayesian analysis

Author keywords

Importance sampling; Markov chain Monte Carlo (MCMC) algorithms; Monte Carlo methods

Indexed keywords


EID: 4043091425     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/088342304000000071     Document Type: Review
Times cited : (39)

References (71)
  • 1
    • 0033349354 scopus 로고    scopus 로고
    • Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
    • ANDRIEU, C. and DOUCET, A. (1999). Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC. IEEE Trans. Signal Process. 47 2667-2676.
    • (1999) IEEE Trans. Signal Process , vol.47 , pp. 2667-2676
    • Andrieu, C.1    Doucet, A.2
  • 2
    • 2442578536 scopus 로고    scopus 로고
    • Controlled MCMC for optimal sampling
    • CEREMADE, Université Paris Dauphine
    • ANDRIEU, C. and ROBERT, C. (2001). Controlled MCMC for optimal sampling. Technical Report 0125, CEREMADE, Université Paris Dauphine.
    • (2001) Technical Report , vol.125
    • Andrieu, C.1    Robert, C.2
  • 3
    • 4043150795 scopus 로고    scopus 로고
    • The interplay of Bayesian and frequentist analysis
    • BAYARRI, M. and BERGER, J. (2004). The interplay of Bayesian and frequentist analysis. Statist. Sci. 19 58-80.
    • (2004) Statist. Sci. , vol.19 , pp. 58-80
    • Bayarri, M.1    Berger, J.2
  • 4
    • 0000298252 scopus 로고    scopus 로고
    • The intrinsic Bayes factor for model selection and prediction
    • BERGER, J. and PERICCHI, L. (1996). The intrinsic Bayes factor for model selection and prediction. J. Amer. Statist. Assoc. 91 109-122.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 109-122
    • Berger, J.1    Pericchi, L.2
  • 5
    • 0042107603 scopus 로고    scopus 로고
    • Objective Bayesian methods for model selection: Introduction and comparison (with discussion)
    • (P. Lahiri, ed.) IMS, Beachwood, OH
    • BERGER, J. and PERICCHI, L. (2001). Objective Bayesian methods for model selection: Introduction and comparison (with discussion). In Model Selection (P. Lahiri, ed.) 135-207. IMS, Beachwood, OH.
    • (2001) Model Selection , pp. 135-207
    • Berger, J.1    Pericchi, L.2
  • 6
    • 4043132499 scopus 로고    scopus 로고
    • Bayesian statistics and the efficiency and ethics of clinical trials
    • BERRY, D. (2004). Bayesian statistics and the efficiency and ethics of clinical trials. Statist. Sci. 19 175-187.
    • (2004) Statist. Sci. , vol.19 , pp. 175-187
    • Berry, D.1
  • 7
    • 0141688093 scopus 로고    scopus 로고
    • Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion)
    • BROOKS, S., GIUDICI, P. and ROBERTS, G. (2003). Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 65 3-55.
    • (2003) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.65 , pp. 3-55
    • Brooks, S.1    Giudici, P.2    Roberts, G.3
  • 10
    • 0442325012 scopus 로고    scopus 로고
    • Markov chain Monte Carlo: 10 years and still running!
    • CAPPÉ, O. and ROBERT, C. (2000). Markov chain Monte Carlo: 10 years and still running! J. Amer. Statist. Assoc. 95 1282-1286.
    • (2000) J. Amer. Statist. Assoc. , vol.95 , pp. 1282-1286
    • Cappé, O.1    Robert, C.2
  • 11
    • 0000506629 scopus 로고
    • Bayesian model choice via Markov chain Monte Carlo
    • CARLIN, B. and CHIB, S. (1995). Bayesian model choice via Markov chain Monte Carlo. J. Roy. Statist. Soc. Ser. B 57 473-484.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 473-484
    • Carlin, B.1    Chib, S.2
  • 12
  • 13
    • 4043060424 scopus 로고    scopus 로고
    • Iterated importance sampling in missing data problems
    • CEREMADE, Université Paris Dauphine
    • CELEUX, G., MARIN, J. and ROBERT, C. (2003). Iterated importance sampling in missing data problems. Technical report, CEREMADE, Université Paris Dauphine.
    • (2003) Technical Report
    • Celeux, G.1    Marin, J.2    Robert, C.3
  • 14
    • 0031527297 scopus 로고    scopus 로고
    • On Monte Carlo methods for estimating ratios of normalizing constants
    • CHEN, M. and SHAO, Q. (1997). On Monte Carlo methods for estimating ratios of normalizing constants. Ann. Statist. 25 1563-1594.
    • (1997) Ann. Statist. , vol.25 , pp. 1563-1594
    • Chen, M.1    Shao, Q.2
  • 16
    • 0012338718 scopus 로고    scopus 로고
    • A sequential particle filter method for static models
    • CHOPIN, N. (2002). A sequential particle filter method for static models. Biometrika 89 539-551.
    • (2002) Biometrika , vol.89 , pp. 539-551
    • Chopin, N.1
  • 17
    • 4043115647 scopus 로고    scopus 로고
    • Model uncertainty
    • CLYDE, M. and GEORGE, E. (2004). Model uncertainty. Statist. Sci. 19 81-94.
    • (2004) Statist. Sci. , vol.19 , pp. 81-94
    • Clyde, M.1    George, E.2
  • 18
    • 4043058995 scopus 로고    scopus 로고
    • Sequential Monte Carlo samplers
    • Dept. Electrical Engineering, Cambridge Univ
    • DEL MORAL, P. and DOUCET, A. (2002). Sequential Monte Carlo samplers. Technical Report 443 CUED/F-INFENG, Dept. Electrical Engineering, Cambridge Univ.
    • (2002) Technical Report 443 CUED/F-INFENG
    • Del Moral, P.1    Doucet, A.2
  • 19
    • 0041332886 scopus 로고    scopus 로고
    • On the stability of interacting processes with applications to filtering and genetic algorithms
    • DEL MORAL, P. and GIONNET, A. (2001). On the stability of interacting processes with applications to filtering and genetic algorithms. Ann. Inst. H. Poincaré Anal. Non Linéaire 37 155-194.
    • (2001) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.37 , pp. 155-194
    • Del Moral, P.1    Gionnet, A.2
  • 20
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • DEMPSTER, A., LAIRD, N. and RUBIN, D. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1-38.
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 22
    • 0141567816 scopus 로고    scopus 로고
    • Marginal maximum a posteriori estimation using Markov chain Monte Carlo
    • DOUCET, A., GODSILL, S. and ROBERT, C. (2002). Marginal maximum a posteriori estimation using Markov chain Monte Carlo. Statist. Comput. 12 77-84.
    • (2002) Statist. Comput. , vol.12 , pp. 77-84
    • Doucet, A.1    Godsill, S.2    Robert, C.3
  • 24
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • GELFAND, A. and SMITH, A. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398-409.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.1    Smith, A.2
  • 25
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
    • GELMAN, A. and MENG, X. (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statist. Sci. 13 163-185.
    • (1998) Statist. Sci. , vol.13 , pp. 163-185
    • Gelman, A.1    Meng, X.2
  • 26
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
    • GEMAN, S. and GEMAN, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Analysis and Machine Intelligence 6 721-741.
    • (1984) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 28
    • 0032333313 scopus 로고    scopus 로고
    • Adaptive Markov chain Monte Carlo through regeneration
    • GILKS, W., ROBERTS, G. and SAHU, S. (1998). Adaptive Markov chain Monte Carlo through regeneration. J. Amer. Statist. Assoc. 93 1045-1054.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 1045-1054
    • Gilks, W.1    Roberts, G.2    Sahu, S.3
  • 29
    • 0035591051 scopus 로고    scopus 로고
    • On the relationship between Markov chain Monte Carlo methods for model uncertainty
    • GODSILL, S. J. (2001). On the relationship between Markov chain Monte Carlo methods for model uncertainty. J. Comput. Graph. Statist. 10 230-248.
    • (2001) J. Comput. Graph. Statist. , vol.10 , pp. 230-248
    • Godsill, S.J.1
  • 30
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • GREEN, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 31
    • 85012534904 scopus 로고    scopus 로고
    • Discretization of continuous Markov chains and Markov chain Monte Carlo convergence assessment
    • GUIHENNEUC-JOUYAUX, C. and ROBERT, C. (1998). Discretization of continuous Markov chains and Markov chain Monte Carlo convergence assessment. J. Amer. Statist. Assoc. 93 1055-1067.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 1055-1067
    • Guihenneuc-Jouyaux, C.1    Robert, C.2
  • 32
    • 0033436531 scopus 로고    scopus 로고
    • Adaptive proposal distribution for random walk Metropolis algorithm
    • HAARIO, H., SAKSMAN, E. and TAMMINEN, J. (1999). Adaptive proposal distribution for random walk Metropolis algorithm. Comput. Statist. 14 375-395.
    • (1999) Comput. Statist. , vol.14 , pp. 375-395
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 33
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • HAARIO, H., SAKSMAN, E. and TAMMINEN, J. (2001). An adaptive Metropolis algorithm. Bernoulli 7 223-242.
    • (2001) Bernoulli , vol.7 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 35
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • HASTINGS, W. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.1
  • 36
    • 0033475052 scopus 로고    scopus 로고
    • A Bayesian restoration of an ion channel signal
    • HODGSON, M. (1999). A Bayesian restoration of an ion channel signal. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 95-114.
    • (1999) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.61 , pp. 95-114
    • Hodgson, M.1
  • 38
    • 4043129651 scopus 로고    scopus 로고
    • Graphical models
    • JORDAN, M. I. (2004). Graphical models. Statist. Sci. 19 140-155.
    • (2004) Statist. Sci. , vol.19 , pp. 140-155
    • Jordan, M.I.1
  • 40
    • 0001079593 scopus 로고
    • Stochastic estimation of the maximum of a regression function
    • KIEFER, J. and WOLFOWITZ, J. (1952). Stochastic estimation of the maximum of a regression function. Ann. Math. Statist. 23 462-466.
    • (1952) Ann. Math. Statist. , vol.23 , pp. 462-466
    • Kiefer, J.1    Wolfowitz, J.2
  • 41
    • 0001251517 scopus 로고    scopus 로고
    • Stochastic volatility: Likelihood inference and comparison with ARCH models
    • KIM, S., SHEPHARD, N. and CHIB, S. (1998). Stochastic volatility: Likelihood inference and comparison with ARCH models. Rev. Econom. Stud. 65 361-393.
    • (1998) Rev. Econom. Stud. , vol.65 , pp. 361-393
    • Kim, S.1    Shephard, N.2    Chib, S.3
  • 42
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • KIRKPATRICK, S., GELATT, C. and VECCHI, M. (1983). Optimization by simulated annealing. Science 220 671-680.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.2    Vecchi, M.3
  • 44
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam's window
    • MADIGAN, D. and RAFTERY, A. (1994). Model selection and accounting for model uncertainty in graphical models using Occam's window. J. Amer. Statist. Assoc. 89 1535-1546.
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.2
  • 45
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • MENG, X. and RUBIN, D. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80 267-278.
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.1    Rubin, D.2
  • 46
    • 18244387717 scopus 로고    scopus 로고
    • The EM algorithm - An old folk-song sung to a fast new tune (with discussion)
    • MENG, X. and VAN DYK, D. (1997). The EM algorithm - an old folk-song sung to a fast new tune (with discussion). J. Roy. Statist. Soc. Ser. B 59 511-567.
    • (1997) J. Roy. Statist. Soc. Ser. B , vol.59 , pp. 511-567
    • Meng, X.1    Van Dyk, D.2
  • 47
    • 21444451325 scopus 로고    scopus 로고
    • Simulating ratios of normalizing constants via a simple identity: A theoretical exploration
    • MENG, X. and WONG, W. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical exploration. Statist. Sinica 6 831-860.
    • (1996) Statist. Sinica , vol.6 , pp. 831-860
    • Meng, X.1    Wong, W.2
  • 50
    • 0007190954 scopus 로고    scopus 로고
    • Simulation-based optimal design
    • (J. Bernardo, J. Berger, A. Dawid, and A. Smith, eds.) Oxford Univ. Press
    • MÜLLER, P. (1999). Simulation-based optimal design. In Bayesian Statistics 6 (J. Bernardo, J. Berger, A. Dawid, and A. Smith, eds.) 459-474. Oxford Univ. Press.
    • (1999) Bayesian Statistics , vol.6 , pp. 459-474
    • Müller, P.1
  • 52
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • NEAL, R. (2001). Annealed importance sampling. Statist. Comput. 11 125-139.
    • (2001) Statist. Comput. , vol.11 , pp. 125-139
    • Neal, R.1
  • 53
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling (with discussion)
    • NEAL, R. (2003). Slice sampling (with discussion). Ann. Statist. 31 705-767.
    • (2003) Ann. Statist. , vol.31 , pp. 705-767
    • Neal, R.1
  • 54
    • 0003078723 scopus 로고
    • Approximate Bayesian inference with the weighted likelihood boostrap (with discussion)
    • NEWTON, M. and RAFTERY, A. (1994). Approximate Bayesian inference with the weighted likelihood boostrap (with discussion). J. Roy. Statist. Soc. Ser. B. 56 3-48.
    • (1994) J. Roy. Statist. Soc. Ser. B , vol.56 , pp. 3-48
    • Newton, M.1    Raftery, A.2
  • 55
    • 21144460219 scopus 로고
    • Integration of multimodal functions by Monte Carlo importance sampling
    • OH, M. and BERGER, J. (1993). Integration of multimodal functions by Monte Carlo importance sampling. J. Amer. Statist. Assoc. 88 450-456.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 450-456
    • Oh, M.1    Berger, J.2
  • 56
    • 0001699493 scopus 로고
    • Spatial birth-and-death processes
    • PRESTON, C. (1976). Spatial birth-and-death processes. Bull. Internat. Statist. Inst. 46 371-391.
    • (1976) Bull. Internat. Statist. Inst. , vol.46 , pp. 371-391
    • Preston, C.1
  • 57
    • 0005193926 scopus 로고    scopus 로고
    • Exact sampling with coupled Markov chains and applications to statistical mechanics
    • PROPP, J. and WILSON, D. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures Algorithms 9 223-252.
    • (1996) Random Structures Algorithms , vol.9 , pp. 223-252
    • Propp, J.1    Wilson, D.2
  • 58
    • 0000135848 scopus 로고
    • Modelling spatial patterns (with discussion)
    • RIPLEY, B. (1977). Modelling spatial patterns (with discussion). J. Roy. Statist. Soc. Ser. B 39 172-212.
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 172-212
    • Ripley, B.1
  • 60
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • ROBBINS, H. and MONRO, S. (1951). A stochastic approximation method. Ann. Math. Statist. 22 400-407.
    • (1951) Ann. Math. Statist. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 67
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion)
    • SMITH, A. and ROBERTS, G. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion). J. Roy. Statist. Soc. Ser. B 55 3-23.
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , pp. 3-23
    • Smith, A.1    Roberts, G.2
  • 68
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian analysis of mixture models with an unknown number of components - An alternative to reversible jump methods
    • STEPHENS, M. (2000). Bayesian analysis of mixture models with an unknown number of components - An alternative to reversible jump methods. Ann. Statist. 28 40-74.
    • (2000) Ann. Statist. , vol.28 , pp. 40-74
    • Stephens, M.1
  • 69
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • TANNER, M. and WONG, W. (1987). The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Statist. Assoc. 82 528-550.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 528-550
    • Tanner, M.1    Wong, W.2
  • 70
    • 4043069967 scopus 로고    scopus 로고
    • Bayesian methods for neural networks and related models
    • TITTERINGTON, D. M. (2004). Bayesian methods for neural networks and related models. Statist. Sci. 19 128-139.
    • (2004) Statist. Sci. , vol.19 , pp. 128-139
    • Titterington, D.M.1
  • 71
    • 4043138057 scopus 로고    scopus 로고
    • Modern Bayesian asymptotics
    • WALKER, S. (2004). Modern Bayesian asymptotics. Statist. Sci. 19 111-117.
    • (2004) Statist. Sci. , vol.19 , pp. 111-117
    • Walker, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.