메뉴 건너뛰기




Volumn 7, Issue 3, 2003, Pages 301-319

A Sequential Monte Carlo Method for Bayesian Analysis of Massive Datasets

Author keywords

Bayesian inference; Importance sampling; Markov chain Monte Carlo; Massive datasets; Mixture model; Particle filter

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; COMPUTER SIMULATION; ESTIMATION; ITERATIVE METHODS; MARKOV PROCESSES; MATHEMATICAL MODELS; MONTE CARLO METHODS;

EID: 0037527978     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1024084221803     Document Type: Conference Paper
Times cited : (50)

References (32)
  • 3
    • 0003482057 scopus 로고    scopus 로고
    • Visualization of navigation patterns on a web site using model-based clustering
    • Microsoft Research
    • Cadez, I., Heckerman, D., Meek, C., Smyth, P., and White, S. 2000. Visualization of navigation patterns on a web site using model-based clustering. Technical Report MSR-TR-00-18, Microsoft Research.
    • (2000) Technical Report , vol.MSR-TR-00-18
    • Cadez, I.1    Heckerman, D.2    Meek, C.3    Smyth, P.4    White, S.5
  • 5
    • 0012338718 scopus 로고    scopus 로고
    • A sequential particle filter method for static models
    • Chopin, N. 2002. A sequential particle filter method for static models. Biometrika, 89(3):539-552.
    • (2002) Biometrika , vol.89 , Issue.3 , pp. 539-552
    • Chopin, N.1
  • 8
    • 0038931405 scopus 로고    scopus 로고
    • Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system
    • DuMouchel, W. 1999. Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system (with Discussion). The American Statistician, 53(3): 177-190.
    • (1999) The American Statistician , vol.53 , Issue.3 , pp. 177-190
    • DuMouchel, W.1
  • 9
    • 0002101112 scopus 로고    scopus 로고
    • A statistical perspective on knowledge discovery in databases
    • U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.). AAAI/MIT Press, Chap. 4
    • Elder, J. and Pregibon, D. 1996. A statistical perspective on knowledge discovery in databases. In Advances in Knowledge Discovery and Data Mining, U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.). AAAI/MIT Press, Chap. 4.
    • (1996) Advances in Knowledge Discovery and Data Mining
    • Elder, J.1    Pregibon, D.2
  • 15
    • 0035648076 scopus 로고    scopus 로고
    • Following a moving target-Monte Carlo inference for dynamic Bayesian models
    • Gilks, W. and Berzuini, C. 2001. Following a moving target-Monte Carlo inference for dynamic Bayesian models. Journal of the Royal Statistical Society B, 63(1):127-146.
    • (2001) Journal of the Royal Statistical Society B , vol.63 , Issue.1 , pp. 127-146
    • Gilks, W.1    Berzuini, C.2
  • 17
    • 0000249788 scopus 로고    scopus 로고
    • An Equivalence between Sparse Approximation and Support Vector Machines
    • Girosi, F. 1998. An Equivalence Between Sparse Approximation and Support Vector Machines. Neural Computation, 10:1455-1480.
    • (1998) Neural Computation , vol.10 , pp. 1455-1480
    • Girosi, F.1
  • 19
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov Chains and their applications
    • Hastings, W.K. 1970. Monte Carlo sampling methods using Markov Chains and their applications. Biometrika, 57:97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 20
    • 0345929957 scopus 로고    scopus 로고
    • On Bayesian learning of sparse classifiers
    • Ju, W.-H., Madigan, D., and Scott, S. 2002. On Bayesian learning of sparse classifiers. Technical report, Rutgers University. Available at http://stat.rutgers.edu/̃madigan/PAPERS/sparse3.ps.
    • (2002) Technical Report
    • Ju, W.-H.1    Madigan, D.2    Scott, S.3
  • 25
    • 0035628554 scopus 로고    scopus 로고
    • Hierarchical model-based clustering for large datasets
    • Posse, C. 2001. Hierarchical model-based clustering for large datasets. Journal of Computational and Graphical Statistics, 10(3):46-486.
    • (2001) Journal of Computational and Graphical Statistics , vol.10 , Issue.3 , pp. 46-486
    • Posse, C.1
  • 26
  • 27
    • 0003516479 scopus 로고    scopus 로고
    • Finite discrete Markov process clustering
    • Microsoft Research
    • Ridgeway, G. 1997. Finite discrete Markov process clustering. Technical Report MSR-TR-97-24, Microsoft Research.
    • (1997) Technical Report , vol.MSR-TR-97-24
    • Ridgeway, G.1
  • 31
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M.E. 2001. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 32
    • 0001868572 scopus 로고    scopus 로고
    • Text categorization based on regularized linear classification methods
    • Zhang, T. and Oles, F.J. 2001. Text categorization based on regularized linear classification methods. Information Retrieval, 4:5-31.
    • (2001) Information Retrieval , vol.4 , pp. 5-31
    • Zhang, T.1    Oles, F.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.