-
1
-
-
0037262814
-
An introduction to MCMC for machine learning
-
Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M.I. 2003. An introduction to MCMC for machine learning. Machine Learning, 50(1/2).
-
(2003)
Machine Learning
, vol.50
, Issue.1-2
-
-
Andrieu, C.1
De Freitas, N.2
Doucet, A.3
Jordan, M.I.4
-
2
-
-
0141477361
-
Bayesian computation and stochastic systems
-
Besag, J., Green, P., Higdon, D., and Mengersen, K. 1995. Bayesian computation and stochastic systems (with Discussion). Statistical Science, 10:3-41.
-
(1995)
Statistical Science
, vol.10
, pp. 3-41
-
-
Besag, J.1
Green, P.2
Higdon, D.3
Mengersen, K.4
-
3
-
-
0003482057
-
Visualization of navigation patterns on a web site using model-based clustering
-
Microsoft Research
-
Cadez, I., Heckerman, D., Meek, C., Smyth, P., and White, S. 2000. Visualization of navigation patterns on a web site using model-based clustering. Technical Report MSR-TR-00-18, Microsoft Research.
-
(2000)
Technical Report
, vol.MSR-TR-00-18
-
-
Cadez, I.1
Heckerman, D.2
Meek, C.3
Smyth, P.4
White, S.5
-
5
-
-
0012338718
-
A sequential particle filter method for static models
-
Chopin, N. 2002. A sequential particle filter method for static models. Biometrika, 89(3):539-552.
-
(2002)
Biometrika
, vol.89
, Issue.3
, pp. 539-552
-
-
Chopin, N.1
-
8
-
-
0038931405
-
Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system
-
DuMouchel, W. 1999. Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system (with Discussion). The American Statistician, 53(3): 177-190.
-
(1999)
The American Statistician
, vol.53
, Issue.3
, pp. 177-190
-
-
DuMouchel, W.1
-
9
-
-
0002101112
-
A statistical perspective on knowledge discovery in databases
-
U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.). AAAI/MIT Press, Chap. 4
-
Elder, J. and Pregibon, D. 1996. A statistical perspective on knowledge discovery in databases. In Advances in Knowledge Discovery and Data Mining, U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.). AAAI/MIT Press, Chap. 4.
-
(1996)
Advances in Knowledge Discovery and Data Mining
-
-
Elder, J.1
Pregibon, D.2
-
12
-
-
0002219642
-
Learning Bayesian network structures from massive datasets: The sparse candidate algorithm
-
Friedman, N., Nachman, I., and Peer, D. 1999. Learning Bayesian network structures from massive datasets: The sparse candidate algorithm. In Proceedings of the Fifteenth Conference on Uncertainty in Articial Intelligence (UAI99), pp. 206-215.
-
(1999)
Proceedings of the Fifteenth Conference on Uncertainty in Articial Intelligence (UAI99)
, pp. 206-215
-
-
Friedman, N.1
Nachman, I.2
Peer, D.3
-
13
-
-
0004012196
-
-
New York: Chapman Hall
-
Gelman, A., Carlin, J., Stern, H., and Rubin, D. 1995. Bayesian Data Analysis. New York: Chapman Hall.
-
(1995)
Bayesian Data Analysis
-
-
Gelman, A.1
Carlin, J.2
Stern, H.3
Rubin, D.4
-
15
-
-
0035648076
-
Following a moving target-Monte Carlo inference for dynamic Bayesian models
-
Gilks, W. and Berzuini, C. 2001. Following a moving target-Monte Carlo inference for dynamic Bayesian models. Journal of the Royal Statistical Society B, 63(1):127-146.
-
(2001)
Journal of the Royal Statistical Society B
, vol.63
, Issue.1
, pp. 127-146
-
-
Gilks, W.1
Berzuini, C.2
-
17
-
-
0000249788
-
An Equivalence between Sparse Approximation and Support Vector Machines
-
Girosi, F. 1998. An Equivalence Between Sparse Approximation and Support Vector Machines. Neural Computation, 10:1455-1480.
-
(1998)
Neural Computation
, vol.10
, pp. 1455-1480
-
-
Girosi, F.1
-
18
-
-
21744454917
-
Statistical themes and lessons for data mining
-
Glymour, C., Madigan, D., Pregibon, D., and Smyth, P. 1997. Statistical themes and lessons for data mining. Data Mining and Knowledge Discovery, 1(1):11-28.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, Issue.1
, pp. 11-28
-
-
Glymour, C.1
Madigan, D.2
Pregibon, D.3
Smyth, P.4
-
19
-
-
77956890234
-
Monte Carlo sampling methods using Markov Chains and their applications
-
Hastings, W.K. 1970. Monte Carlo sampling methods using Markov Chains and their applications. Biometrika, 57:97-109.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
20
-
-
0345929957
-
On Bayesian learning of sparse classifiers
-
Ju, W.-H., Madigan, D., and Scott, S. 2002. On Bayesian learning of sparse classifiers. Technical report, Rutgers University. Available at http://stat.rutgers.edu/̃madigan/PAPERS/sparse3.ps.
-
(2002)
Technical Report
-
-
Ju, W.-H.1
Madigan, D.2
Scott, S.3
-
21
-
-
84950943564
-
Sequential imputation and Bayesian missing data problems
-
Kong, A., Liu, J., and Wong, W. 1994. Sequential imputation and Bayesian missing data problems. Journal of the American Statistical Association, 89:278-288.
-
(1994)
Journal of the American Statistical Association
, vol.89
, pp. 278-288
-
-
Kong, A.1
Liu, J.2
Wong, W.3
-
23
-
-
0036100902
-
Likelihood-based data squashing: A modeling approach to instance construction
-
Madigan, D., Raghavan, N., DuMouchel, W., Nason, M., Posse, C., and Ridgeway, G. 2002. Likelihood-based data squashing: A modeling approach to instance construction. Data Mining and Knowledge Discovery, 6(2): 173-190.
-
(2002)
Data Mining and Knowledge Discovery
, vol.6
, Issue.2
, pp. 173-190
-
-
Madigan, D.1
Raghavan, N.2
Dumouchel, W.3
Nason, M.4
Posse, C.5
Ridgeway, G.6
-
24
-
-
5744249209
-
Equations of state calculations by fast computing machine
-
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. 1953. Equations of state calculations by fast computing machine. Journal of Chemical Physics, 21:1087-1091.
-
(1953)
Journal of Chemical Physics
, vol.21
, pp. 1087-1091
-
-
Metropolis, N.1
Rosenbluth, A.2
Rosenbluth, M.3
Teller, A.4
Teller, E.5
-
25
-
-
0035628554
-
Hierarchical model-based clustering for large datasets
-
Posse, C. 2001. Hierarchical model-based clustering for large datasets. Journal of Computational and Graphical Statistics, 10(3):46-486.
-
(2001)
Journal of Computational and Graphical Statistics
, vol.10
, Issue.3
, pp. 46-486
-
-
Posse, C.1
-
26
-
-
0036532775
-
Bayesian clustering by dynamics
-
Ramoni, M., Sebastiani, P., and Cohen, P. 2002. Bayesian clustering by dynamics. Machine Learning, 47(1):91-121.
-
(2002)
Machine Learning
, vol.47
, Issue.1
, pp. 91-121
-
-
Ramoni, M.1
Sebastiani, P.2
Cohen, P.3
-
27
-
-
0003516479
-
Finite discrete Markov process clustering
-
Microsoft Research
-
Ridgeway, G. 1997. Finite discrete Markov process clustering. Technical Report MSR-TR-97-24, Microsoft Research.
-
(1997)
Technical Report
, vol.MSR-TR-97-24
-
-
Ridgeway, G.1
-
31
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping, M.E. 2001. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244.
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
32
-
-
0001868572
-
Text categorization based on regularized linear classification methods
-
Zhang, T. and Oles, F.J. 2001. Text categorization based on regularized linear classification methods. Information Retrieval, 4:5-31.
-
(2001)
Information Retrieval
, vol.4
, pp. 5-31
-
-
Zhang, T.1
Oles, F.J.2
|