-
2
-
-
0016355478
-
A new look at the statistical model identification
-
H. Akaike. A new look at the statistical model identification. IEEE Trans. Automat. Control, 19(6):716-723, 1974.
-
(1974)
IEEE Trans. Automat. Control
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
5
-
-
0042967689
-
Data-dependent margin-based generalization bounds for classification
-
A. Antos, B. Kégl, T. Linder, and G. Lugosi. Data-dependent margin-based generalization bounds for classification. JMLR, 3:73-98, 2002.
-
(2002)
JMLR
, vol.3
, pp. 73-98
-
-
Antos, A.1
Kégl, B.2
Linder, T.3
Lugosi, G.4
-
6
-
-
0012372245
-
Improving algorithms for boosting
-
San Francisco, Morgan Kaufmann
-
J.A. Aslam. Improving algorithms for boosting. In Proc. COLT, San Francisco, 2000. Morgan Kaufmann.
-
(2000)
Proc. COLT
-
-
Aslam, J.A.1
-
10
-
-
84937440359
-
Localized rademacher averages
-
Procedings COLT'02, Sydney, Springer
-
P.L. Bartlett, O. Bousquet, and S. Mendelson. Localized rademacher averages. In Procedings COLT'02, volume 2375 of LNAI, pages 44-58, Sydney, 2002. Springer.
-
(2002)
LNAI
, vol.2375
, pp. 44-58
-
-
Bartlett, P.L.1
Bousquet, O.2
Mendelson, S.3
-
11
-
-
0041413385
-
Rademacher and gaussian complexities: Risk bounds and structural results
-
to appear 10/02
-
P.L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 2002. to appear 10/02.
-
(2002)
Journal of Machine Learning Research
-
-
Bartlett, P.L.1
Mendelson, S.2
-
12
-
-
0032645080
-
An empirical comparison of voting classification algorithm: Bagging, boosting and variants
-
E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithm: Bagging, boosting and variants. Machine Learning, 36:105-142, 1999.
-
(1999)
Machine Learning
, vol.36
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
13
-
-
21744459385
-
Legendre functions and the method of random Bregman projections
-
H.H. Bauschke and J.M. Borwein. Legendre functions and the method of random Bregman projections. Journal of Convex Analysis, 4:27-67, 1997.
-
(1997)
Journal of Convex Analysis
, vol.4
, pp. 27-67
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
17
-
-
0026860799
-
Robust linear programming discrimination of two linearly inseparable sets
-
K.P. Bennett and O.L. Mangasarian. Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1:23-34, 1992.
-
(1992)
Optimization Methods and Software
, vol.1
, pp. 23-34
-
-
Bennett, K.P.1
Mangasarian, O.L.2
-
18
-
-
84956662941
-
A boosting algorithm for regression
-
W.Gerstner, A.Germond, M.Hasler, and J.-D. Nicoud, editors, Proceedings ICANN'97, Int. Conf. on Artificial Neural Networks, Berlin, Springer
-
A. Bertoni, P. Campadelli, and M. Parodi. A boosting algorithm for regression. In W.Gerstner, A.Germond, M.Hasler, and J.-D. Nicoud, editors, Proceedings ICANN'97, Int. Conf. on Artificial Neural Networks, volume V of LNCS, pages 343-348, Berlin, 1997. Springer.
-
(1997)
LNCS
, vol.5
, pp. 343-348
-
-
Bertoni, A.1
Campadelli, P.2
Parodi, M.3
-
21
-
-
0023646365
-
Occam's razor
-
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam's razor. Information Processing Letters, 24:377-380, 1987.
-
(1987)
Information Processing Letters
, vol.24
, pp. 377-380
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussler, D.3
Warmuth, M.4
-
22
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler, editor
-
B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal margin classifiers. In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pages 144-152, 1992.
-
(1992)
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
23
-
-
0002709342
-
Feature selection via concave minimization and support vector machines
-
Morgan Kaufmann, San Francisco, CA
-
P.S. Bradley and O.L. Mangasarian. Feature selection via concave minimization and support vector machines. In Proc. 15th International Conf. on Machine Learning, pages 82-90. Morgan Kaufmann, San Francisco, CA, 1998.
-
(1998)
Proc. 15th International Conf. on Machine Learning
, pp. 82-90
-
-
Bradley, P.S.1
Mangasarian, O.L.2
-
24
-
-
49949144765
-
The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming
-
L.M. Bregman. The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Math, and Math. Physics, 7:200-127, 1967.
-
(1967)
USSR Computational Math. and Math. Physics
, vol.7
, pp. 200-1127
-
-
Bregman, L.M.1
-
25
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 26(2):123-140, 1996.
-
(1996)
Machine Learning
, vol.26
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
26
-
-
0003619255
-
-
Technical Report 460, Statistics Department, University of California, July
-
L. Breiman. Bias, variance, and arcing classifiers. Technical Report 460, Statistics Department, University of California, July 1997.
-
(1997)
Bias, Variance, and Arcing Classifiers
-
-
Breiman, L.1
-
27
-
-
0000275022
-
Prediction games and arcing algorithms
-
Also Technical Report 504, Statistics Department, University of California Berkeley
-
L. Breiman. Prediction games and arcing algorithms. Neural Computation, 11(7):1493-1518, 1999. Also Technical Report 504, Statistics Department, University of California Berkeley.
-
(1999)
Neural Computation
, vol.11
, Issue.7
, pp. 1493-1518
-
-
Breiman, L.1
-
30
-
-
35248866734
-
On boosting with polynomially bounded distributions
-
Accepted
-
N. Bshouty and D. Gavinsky. On boosting with polynomially bounded distributions. JMLR, pages 107-111, 2002. Accepted.
-
(2002)
JMLR
, pp. 107-111
-
-
Bshouty, N.1
Gavinsky, D.2
-
31
-
-
35248892220
-
Boosting with the 12 loss: Regression and classification
-
revised, also Technical Report 605, Stat Dept, UC Berkeley August, 2001
-
P. Buhlmann and B. Yu. Boosting with the 12 loss: Regression and classification. J. Amer. Statist. Assoc., 2002. revised, also Technical Report 605, Stat Dept, UC Berkeley August, 2001.
-
(2002)
J. Amer. Statist. Assoc.
-
-
Buhlmann, P.1
Yu, B.2
-
32
-
-
84898950762
-
A linear programming approach to novelty detection
-
T.K. Leen, T.G. Dietterich, and V. Tresp, editors, MIT Press
-
C. Campbell and K.P. Bennett. A linear programming approach to novelty detection. In T.K. Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems, volume 13, pages 395-401. MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 395-401
-
-
Campbell, C.1
Bennett, K.P.2
-
33
-
-
0343248361
-
Non-intrusive appliance load monitoring system
-
Electric Power Research Institute
-
J. Carmichael. Non-intrusive appliance load monitoring system. Epri journal, Electric Power Research Institute, 1990.
-
(1990)
Epri Journal
-
-
Carmichael, J.1
-
35
-
-
0028463049
-
Bounds on approximate steepest descent for likelihood maximization in exponential families
-
July
-
N. Cesa-Bianchi, A. Krogh, and M. Warmuth. Bounds on approximate steepest descent for likelihood maximization in exponential families. IEEE Transaction on Information Theory, 40(4):1215-1220, July 1994.
-
(1994)
IEEE Transaction on Information Theory
, vol.40
, Issue.4
, pp. 1215-1220
-
-
Cesa-Bianchi, N.1
Krogh, A.2
Warmuth, M.3
-
36
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1):131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
37
-
-
0004134624
-
-
Technical Report 479, Department of Statistics, Stanford University
-
S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. Technical Report 479, Department of Statistics, Stanford University, 1995.
-
(1995)
Atomic Decomposition by Basis Pursuit
-
-
Chen, S.1
Donoho, D.2
Saunders, M.3
-
38
-
-
28444495042
-
Learning to order things
-
Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, The MIT Press
-
W.W. Cohen, R.E. Schapire, and Y. Singer. Learning to order things. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Advances in Neural Information Processing Systems, volume 10. The MIT Press, 1998.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
-
-
Cohen, W.W.1
Schapire, R.E.2
Singer, Y.3
-
39
-
-
0036643072
-
Logistic Regression, AdaBoost and Bregman distances
-
Special Issue on New Methods for Model Selection and Model Combination
-
M. Collins, R.E. Schapire, and Y. Singer. Logistic Regression, AdaBoost and Bregman distances. Machine Learning, 48(1-3):253-285, 2002. Special Issue on New Methods for Model Selection and Model Combination.
-
(2002)
Machine Learning
, vol.48
, Issue.1-3
, pp. 253-285
-
-
Collins, M.1
Schapire, R.E.2
Singer, Y.3
-
40
-
-
0028543354
-
A stable exponential penalty algorithm with superlinear convergence
-
Nov
-
R. Cominetti and J.-P. Dussault. A stable exponential penalty algorithm with superlinear convergence. J.O.T.A., 83(2), Nov 1994.
-
(1994)
J.O.T.A.
, vol.83
, Issue.2
-
-
Cominetti, R.1
Dussault, J.-P.2
-
43
-
-
0000541146
-
Asymptotic analysis of penalized likelihood and related estimates
-
D.D. Cox and F. O'Sullivan. Asymptotic analysis of penalized likelihood and related estimates. The Annals of Statistics, 18(4):1676-1695, 1990.
-
(1990)
The Annals of Statistics
, vol.18
, Issue.4
, pp. 1676-1695
-
-
Cox, D.D.1
O'Sullivan, F.2
-
44
-
-
0010099436
-
On the learnability and design of output codes for multiclass problems
-
N. Cesa-Bianchi and S. Goldberg, editors, San Francisco, Morgan Kaufmann
-
K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass problems. In N. Cesa-Bianchi and S. Goldberg, editors, Proc. Colt, pages 35-46, San Francisco, 2000. Morgan Kaufmann.
-
(2000)
Proc. Colt
, pp. 35-46
-
-
Crammer, K.1
Singer, Y.2
-
46
-
-
0031120321
-
Inducing features of random fields
-
April
-
S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380-393, April 1997.
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.4
, pp. 380-393
-
-
Della Pietra, S.1
Della Pietra, V.2
Lafferty, J.3
-
47
-
-
0004027463
-
-
Technical Report CMU-CS-01-109, School of Computer Science, Carnegie Mellon University
-
S. Della Pietra, V. Della Pietra, and J. Lafferty. Duality and auxiliary functions for Bregman distances. Technical Report CMU-CS-01-109, School of Computer Science, Carnegie Mellon University, 2001.
-
(2001)
Duality and Auxiliary Functions for Bregman Distances
-
-
Della Pietra, S.1
Della Pietra, V.2
Lafferty, J.3
-
51
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T.G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139-157, 1999.
-
(1999)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
53
-
-
0005271994
-
A modification of AdaBoost
-
San Francisco, Morgan Kaufmann
-
C. Domingo and O. Watanabe. A modification of AdaBoost. In Proc. COLT, San Francisco, 2000. Morgan Kaufmann.
-
(2000)
Proc. COLT
-
-
Domingo, C.1
Watanabe, O.2
-
54
-
-
0001337304
-
Boosting and other ensemble methods
-
H. Drucker, C. Cortes, L.D. Jackel, Y. LeCun, and V. Vapnik. Boosting and other ensemble methods. Neural Computation, 6, 1994.
-
(1994)
Neural Computation
, vol.6
-
-
Drucker, H.1
Cortes, C.2
Jackel, L.D.3
LeCun, Y.4
Vapnik, V.5
-
56
-
-
84947765278
-
A geometric approach to leveraging weak learners
-
P. Fischer and H. U. Simon, editors, March Long version to appear in TCS
-
N. Duffy and D.P. Helmbold. A geometric approach to leveraging weak learners. In P. Fischer and H. U. Simon, editors, Computational Learning Theory: 4th European Conference (EuroCOLT '99), pages 18-33, March 1999. Long version to appear in TCS.
-
(1999)
Computational Learning Theory: 4th European Conference (EuroCOLT '99)
, pp. 18-33
-
-
Duffy, N.1
Helmbold, D.P.2
-
57
-
-
35248886374
-
-
Technical report, Department of Computer Science, University of Santa Cruz
-
N. Duffy and D.P. Helmbold. Boosting methods for regression. Technical report, Department of Computer Science, University of Santa Cruz, 2000.
-
(2000)
Boosting Methods for Regression
-
-
Duffy, N.1
Helmbold, D.P.2
-
58
-
-
0005003947
-
Leveraging for regression
-
San Francisco, Morgan Kaufmann
-
N. Duffy and D.P. Helmbold. Leveraging for regression. In Proc. COLT, pages 208-219, San Francisco, 2000. Morgan Kaufmann.
-
(2000)
Proc. COLT
, pp. 208-219
-
-
Duffy, N.1
Helmbold, D.P.2
-
59
-
-
84898984337
-
Potential boosters?
-
S.A. Solla, T.K. Leen, and K.-R. Müller, editors, MIT Press
-
N. Duffy and D.P. Helmbold. Potential boosters? In S.A. Solla, T.K. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems, volume 12, pages 258-264. MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 258-264
-
-
Duffy, N.1
Helmbold, D.P.2
-
60
-
-
84974712696
-
Boosting applied to word sense disambiguation
-
Barcelona, Spain
-
G. Escudero, L. Marquez, and G. Rigau. Boosting applied to word sense disambiguation. In LNAI 1810: Proceedings of the 12th European Conference on Machine Learning, ECML, pages 129-141, Barcelona, Spain, 2000.
-
(2000)
LNAI 1810: Proceedings of the 12th European Conference on Machine Learning, ECML
, pp. 129-141
-
-
Escudero, G.1
Marquez, L.2
Rigau, G.3
-
63
-
-
0006444313
-
-
Technical report, Dep. of Computer Science and Electrical Engineering, University of Queensland
-
M. Prean and T. Downs. A simple cost function for boosting. Technical report, Dep. of Computer Science and Electrical Engineering, University of Queensland, 1998.
-
(1998)
A Simple Cost Function for Boosting
-
-
Prean, M.1
Downs, T.2
-
64
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
September
-
Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256-285, September 1995.
-
(1995)
Information and Computation
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
65
-
-
0035371148
-
An adaptive version of the boost by majority algorithm
-
Y. Freund. An adaptive version of the boost by majority algorithm. Machine Learning, 43(3):293-318, 2001.
-
(2001)
Machine Learning
, vol.43
, Issue.3
, pp. 293-318
-
-
Freund, Y.1
-
67
-
-
0002897323
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
EuroCOLT: European Conference on Computational Learning Theory
-
Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. In EuroCOLT: European Conference on Computational Learning Theory. LNCS, 1994.
-
(1994)
LNCS
-
-
Freund, Y.1
Schapire, R.E.2
-
69
-
-
0030419058
-
Game theory, on-line prediction and boosting
-
New York, NY, ACM Press
-
Y. Freund and R.E. Schapire. Game theory, on-line prediction and boosting. In Proc. COLT, pages 325-332, New York, NY, 1996. ACM Press.
-
(1996)
Proc. COLT
, pp. 325-332
-
-
Freund, Y.1
Schapire, R.E.2
-
70
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
71
-
-
0002267135
-
Adaptive game playing using multiplicative weights
-
Y. Freund and R.E. Schapire. Adaptive game playing using multiplicative weights. Games and Economic Behavior, 29:79-103, 1999.
-
(1999)
Games and Economic Behavior
, vol.29
, pp. 79-103
-
-
Freund, Y.1
Schapire, R.E.2
-
72
-
-
0001963082
-
A short introduction to boosting
-
September Appeared in Japanese, translation by Naoki Abe
-
Y. Freund and R.E. Schapire. A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence, 14(5):771-780, September 1999. Appeared in Japanese, translation by Naoki Abe.
-
(1999)
Journal of Japanese Society for Artificial Intelligence
, vol.14
, Issue.5
, pp. 771-780
-
-
Freund, Y.1
Schapire, R.E.2
-
74
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
with discussion pp.375-407, also Technical Report at Department of Statistics, Sequoia Hall, Stanford University
-
J. Friedman, T. Hastie, and R.J. Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 2:337-374, 2000. with discussion pp.375-407, also Technical Report at Department of Statistics, Sequoia Hall, Stanford University.
-
(2000)
Annals of Statistics
, vol.2
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.J.3
-
75
-
-
21744462998
-
On bias, variance, 0/1-loss, and the corse of dimensionality
-
Kluwer Academic Publishers
-
J.H. Friedman. On bias, variance, 0/1-loss, and the corse of dimensionality. In Data Mining and Knowledge Discovery, volume I, pages 55-77. Kluwer Academic Publishers, 1997.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 55-77
-
-
Friedman, J.H.1
-
76
-
-
0003591748
-
-
Technical report, Department of Statistics, Stanford University, February
-
J.H. Friedman. Greedy function approximation. Technical report, Department of Statistics, Stanford University, February 1999.
-
(1999)
Greedy Function Approximation
-
-
Friedman, J.H.1
-
78
-
-
0033311945
-
Classification on proximity data with LP-machines
-
D. Willshaw and A. Murray, editors, IEE Press
-
T. Graepel, R. Herbrich, B. Schölkopf, A.J. Smola, P.L. Bartlett, K.-R. Müller, K. Obermayer, and R.C. Williamson. Classification on proximity data with LP-machines. In D. Willshaw and A. Murray, editors, Proceedings of ICANN'99, volume 1, pages 304-309. IEE Press, 1999.
-
(1999)
Proceedings of ICANN'99
, vol.1
, pp. 304-309
-
-
Graepel, T.1
Herbrich, R.2
Schölkopf, B.3
Smola, A.J.4
Bartlett, P.L.5
Müller, K.-R.6
Obermayer, K.7
Williamson, R.C.8
-
79
-
-
84958949175
-
Bagging can stabilize without reducing variance
-
ICANN'01, Springer
-
Y. Grandvalet. Bagging can stabilize without reducing variance. In ICANN'01, Lecture Notes in Computer Science. Springer, 2001.
-
(2001)
Lecture Notes in Computer Science
-
-
Grandvalet, Y.1
-
80
-
-
85068625434
-
Boosting mixture models for semi-supervised tasks
-
Vienna, Austria
-
Y. Grandvalet, F. D'alché-Buc, and C. Ambroise. Boosting mixture models for semi-supervised tasks. In Proc. ICANN, Vienna, Austria, 2001.
-
(2001)
Proc. ICANN
-
-
Grandvalet, Y.1
D'alché-Buc, F.2
Ambroise, C.3
-
82
-
-
0033280008
-
Multiclass learning, boosing, and error-correcting codes
-
New York, USA, ACM Press
-
V. Guruswami and A. Sahai. Multiclass learning, boosing, and error-correcting codes. In Proc. of the twelfth annual conference on Computational learning theory, pages 145-155, New York, USA, 1999. ACM Press.
-
(1999)
Proc. of the Twelfth Annual Conference on Computational Learning Theory
, pp. 145-155
-
-
Guruswami, V.1
Sahai, A.2
-
83
-
-
0026970695
-
Non-intrusive appliance load monitoring
-
W. Hart. Non-intrusive appliance load monitoring. Proceedings of the IEEE, 80(12), 1992.
-
(1992)
Proceedings of the IEEE
, vol.80
, Issue.12
-
-
Hart, W.1
-
84
-
-
0032632353
-
Using decision trees to construct a practical parser
-
M. Haruno, S. Shirai, and Y. Ooyama. Using decision trees to construct a practical parser. Machine Learning, 34:131-149, 1999.
-
(1999)
Machine Learning
, vol.34
, pp. 131-149
-
-
Haruno, M.1
Shirai, S.2
Ooyama, Y.3
-
85
-
-
0003684449
-
-
Springer series in statistics. Springer, New York, N.Y.
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: data mining, inference and prediction. Springer series in statistics. Springer, New York, N.Y., 2001.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
87
-
-
0002192516
-
Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications
-
D. Haussler. Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications. Information and Computation, 100:78-150, 1992.
-
(1992)
Information and Computation
, vol.100
, pp. 78-150
-
-
Haussler, D.1
-
89
-
-
0033336069
-
Relative loss bounds for single neurons
-
D.P. Helmbold, K. Kivinen, and M.K. Warmuth. Relative loss bounds for single neurons. IEEE Transactions on Neural Networks, 10(6):1291-1304, 1999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.6
, pp. 1291-1304
-
-
Helmbold, D.P.1
Kivinen, K.2
Warmuth, M.K.3
-
90
-
-
0003946694
-
Learning Linear Classifiers: Theory and Algorithms
-
MIT Press
-
R. Herbrich. Learning Linear Classifiers: Theory and Algorithms, volume 7 of Adaptive Computation and Machine Learning. MIT Press, 2002.
-
(2002)
Adaptive Computation and Machine Learning
, vol.7
-
-
Herbrich, R.1
-
91
-
-
0347712436
-
Sparsity vs. large margins for linear classifiers
-
San Francisco, Morgan Kaufmann
-
R. Herbrich, T. Graepel, and J. Shawe-Taylor. Sparsity vs. large margins for linear classifiers. In Proc. COLT, pages 304-308, San Francisco, 2000. Morgan Kaufmann.
-
(2000)
Proc. COLT
, pp. 304-308
-
-
Herbrich, R.1
Graepel, T.2
Shawe-Taylor, J.3
-
92
-
-
0041965981
-
Algorithmic luckiness
-
R. Herbrich and R. Williamson. Algorithmic luckiness. JMLR, 3:175-212, 2002.
-
(2002)
JMLR
, vol.3
, pp. 175-212
-
-
Herbrich, R.1
Williamson, R.2
-
93
-
-
0027657329
-
Semi-infinite programming: Theory, methods and applications
-
September
-
R. Hettich and K.O. Kortanek. Semi-infinite programming: Theory, methods and applications. SIAM Review, 3:380-429, September 1993.
-
(1993)
SIAM Review
, vol.3
, pp. 380-429
-
-
Hettich, R.1
Kortanek, K.O.2
-
94
-
-
84905371122
-
Pose invariant face recognition
-
Grenoble, France
-
F.J. Huang, Z.-H. Zhou, H.-J. Zhang, and T. Chen. Pose invariant face recognition. In Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition, pages 245-250, Grenoble, France, 2000.
-
(2000)
Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition
, pp. 245-250
-
-
Huang, F.J.1
Zhou, Z.-H.2
Zhang, H.-J.3
Chen, T.4
-
95
-
-
0002771295
-
Boosting for document routing
-
A. Agah, J. Callan, and E. Rundensteiner, editors, McLean, US, ACM Press, New York, US
-
R.D. Iyer, D.D. Lewis, R.E. Schapire, Y. Singer, and A. Singhal. Boosting for document routing. In A. Agah, J. Callan, and E. Rundensteiner, editors, Proceedings of CIKM-00, 9th ACM International Conference on Information and Knowledge Management, pages 70-77, McLean, US, 2000. ACM Press, New York, US.
-
(2000)
Proceedings of CIKM-00, 9th ACM International Conference on Information and Knowledge Management
, pp. 70-77
-
-
Iyer, R.D.1
Lewis, D.D.2
Schapire, R.E.3
Singer, Y.4
Singhal, A.5
-
96
-
-
0001486499
-
Estimation with quadratic loss
-
Berkeley, University of California Press
-
W. James and C. Stein. Estimation with quadratic loss. In Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, volume 1, pages 361-380, Berkeley, 1960. University of California Press.
-
(1960)
Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability
, vol.1
, pp. 361-380
-
-
James, W.1
Stein, C.2
-
99
-
-
0000262562
-
Hierarchical mixtures of experts and the EM algorithm
-
M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6(2):181-214, 1994.
-
(1994)
Neural Computation
, vol.6
, Issue.2
, pp. 181-214
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
100
-
-
0029700730
-
On the boosting ability og top-down decision tree learning algorithms
-
ACM Press
-
M. Kearns and Y. Mansour. On the boosting ability og top-down decision tree learning algorithms. In Proc. 28th ACM Symposium on the Theory of Computing, pages 459-468. ACM Press, 1996.
-
(1996)
Proc. 28th ACM Symposium on the Theory of Computing
, pp. 459-468
-
-
Kearns, M.1
Mansour, Y.2
-
101
-
-
0028324717
-
Cryptographic limitations on learning Boolean formulae and finite automata
-
January
-
M. Kearns and L. Valiant. Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the ACM, 41(1):67-95, January 1994.
-
(1994)
Journal of the ACM
, vol.41
, Issue.1
, pp. 67-95
-
-
Kearns, M.1
Valiant, L.2
-
103
-
-
0015000439
-
Some results on Tchebycheffian spline functions
-
G.S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal. Applic., 33:82-95, 1971.
-
(1971)
J. Math. Anal. Applic.
, vol.33
, pp. 82-95
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
105
-
-
0031375503
-
The perceptron algorithm vs. winnow: Linear vs. logarithmic mistake bounds when few input variables are relevant
-
J. Kivinen, M. Warmuth, and P. Auer. The perceptron algorithm vs. winnow: Linear vs. logarithmic mistake bounds when few input variables are relevant. Special issue of Artificial Intelligence, 97(1-2):325-343, 1997.
-
(1997)
Special Issue of Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 325-343
-
-
Kivinen, J.1
Warmuth, M.2
Auer, P.3
-
106
-
-
0008815681
-
Additive versus exponentiated gradient updates for linear prediction
-
J. Kivinen and M.K. Warmuth. Additive versus exponentiated gradient updates for linear prediction. Information and Computation, 132(1):1-64, 1997.
-
(1997)
Information and Computation
, vol.132
, Issue.1
, pp. 1-64
-
-
Kivinen, J.1
Warmuth, M.K.2
-
107
-
-
11744321022
-
Relaxation methods for strictly convex regularizations of piecewise linear programs
-
K.C. Kiwiel. Relaxation methods for strictly convex regularizations of piecewise linear programs. Applied Mathematics and Optimization, 38:239-259, 1998.
-
(1998)
Applied Mathematics and Optimization
, vol.38
, pp. 239-259
-
-
Kiwiel, K.C.1
-
108
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
V. Koltchinksii and D. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. Ann. Statis., 30(1), 2002.
-
Ann. Statis.
, vol.30
, Issue.1
, pp. 2002
-
-
Koltchinksii, V.1
Panchenko, D.2
-
110
-
-
0033280975
-
Additive models, boosting, and inference for generalized divergences
-
New York, NY, ACM Press
-
110: J. Lafferty. Additive models, boosting, and inference for generalized divergences. In Proc. 12th Annu. Conf. on Comput. Learning Theory, pages 125-133, New York, NY, 1999. ACM Press.
-
(1999)
Proc. 12th Annu. Conf. on Comput. Learning Theory
, pp. 125-133
-
-
Lafferty, J.1
-
111
-
-
84898999495
-
Boosting and maximum likelihood for exponential models
-
to appear. Longer version also NeuroCOLT Technical Report NC-TR-2001-098
-
G. Lebanon and J. Lafferty. Boosting and maximum likelihood for exponential models. In Advances in Neural information processings systems, volume 14, 2002. to appear. Longer version also NeuroCOLT Technical Report NC-TR-2001-098.
-
(2002)
Advances in Neural Information Processings Systems
, vol.14
-
-
Lebanon, G.1
Lafferty, J.2
-
112
-
-
0002331173
-
Comparison of learning algorithms for handwritten digit recognition
-
F. Fogelman-Soulié and P. Gallinari, editors, Nanterre, France, EC2
-
Y.A. LeCun, L.D. Jackel, L. Bottou, A. Brunot, C. Cortes, J.S. Denker, H. Drucker, I. Guyon, U.A. Müller, E. Säckinger, P.Y. Simard, and V.N. Vapnik. Comparison of learning algorithms for handwritten digit recognition. In F. Fogelman-Soulié and P. Gallinari, editors, Proceedings ICANN'95 - International Conference on Artificial Neural Networks, volume II, pages 53-60, Nanterre, France, 1995. EC2.
-
(1995)
Proceedings ICANN'95 - International Conference on Artificial Neural Networks
, vol.2
, pp. 53-60
-
-
LeCun, Y.A.1
Jackel, L.D.2
Bottou, L.3
Brunot, A.4
Cortes, C.5
Denker, J.S.6
Drucker, H.7
Guyon, I.8
Müller, U.A.9
Säckinger, E.10
Simard, P.Y.11
Vapnik, V.N.12
-
113
-
-
0027262895
-
Multilayer Feedforward Networks with a Nonpolynomial Activation Function Can Approximate any Function
-
M. Leshno, V. Lin, A. Pinkus, and S. Schocken. Multilayer Feedforward Networks with a Nonpolynomial Activation Function Can Approximate any Function. Neural Networks, 6:861-867, 1993.
-
(1993)
Neural Networks
, vol.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.2
Pinkus, A.3
Schocken, S.4
-
114
-
-
0001928981
-
On-line learning of linear functions
-
Earlier version is Technical Report CRL-91-29 at UC Santa Cruz
-
N. Littlestone, P.M. Long, and M.K. Warmuth. On-line learning of linear functions. Journal of Computational Complexity, 5:1-23, 1995. Earlier version is Technical Report CRL-91-29 at UC Santa Cruz.
-
(1995)
Journal of Computational Complexity
, vol.5
, pp. 1-23
-
-
Littlestone, N.1
Long, P.M.2
Warmuth, M.K.3
-
115
-
-
0003488911
-
-
Addison-Wesley Publishing Co., Reading, second edition, May Reprinted with corrections in May
-
D.G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Publishing Co., Reading, second edition, May 1984. Reprinted with corrections in May, 1989.
-
(1984)
Linear and Nonlinear Programming
-
-
Luenberger, D.G.1
-
116
-
-
84937412009
-
A consistent strategy for boosting algorithms
-
Proceedings of the Annual Conference on Computational Learning Theory, Sydney, February Springer
-
Gabor Lugosi and Nicolas Vayatis. A consistent strategy for boosting algorithms. In Proceedings of the Annual Conference on Computational Learning Theory, volume 2375 of LNAI, pages 303-318, Sydney, February 2002. Springer.
-
(2002)
LNAI
, vol.2375
, pp. 303-318
-
-
Lugosi, G.1
Vayatis, N.2
-
117
-
-
0026678659
-
On the convergence of coordinate descent method for convex differentiable minimization
-
Z.-Q. Luo and P. Tseng. On the convergence of coordinate descent method for convex differentiable minimization. Journal of Optimization Theory and Applications, 72(1):7-35, 1992.
-
(1992)
Journal of Optimization Theory and Applications
, vol.72
, Issue.1
, pp. 7-35
-
-
Luo, Z.-Q.1
Tseng, P.2
-
118
-
-
0027842081
-
Matching Pursuits with time-frequency dictionaries
-
December
-
S. Mallat and Z. Zhang. Matching Pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12):3397-3415, December 1993.
-
(1993)
IEEE Transactions on Signal Processing
, vol.41
, Issue.12
, pp. 3397-3415
-
-
Mallat, S.1
Zhang, Z.2
-
119
-
-
0000963583
-
Linear and nonlinear separation of patterns by linear programming
-
O.L. Mangasarian. Linear and nonlinear separation of patterns by linear programming. Operations Research, 13:444-452, 1965.
-
(1965)
Operations Research
, vol.13
, pp. 444-452
-
-
Mangasarian, O.L.1
-
120
-
-
0032686461
-
Arbitrary-norm separating plane
-
O.L. Mangasarian. Arbitrary-norm separating plane. Operation Research Letters, 24(1):15-23, 1999.
-
(1999)
Operation Research Letters
, vol.24
, Issue.1
, pp. 15-23
-
-
Mangasarian, O.L.1
-
122
-
-
0036643066
-
On the existence of weak learners and applications to boosting
-
S. Manner and R. Meir. On the existence of weak learners and applications to boosting. Machine Learning, 48(1-3) :219-251, 2002.
-
(2002)
Machine Learning
, vol.48
, Issue.1-3
, pp. 219-251
-
-
Manner, S.1
Meir, R.2
-
123
-
-
84937440094
-
The consistency of greedy algorithms for classification
-
Procedings COLT'02, Sydney, Springer
-
S. Manner, R. Meir, and T. Zhang. The consistency of greedy algorithms for classification. In Procedings COLT'02, volume 2375 of LNAI, pages 319-333, Sydney, 2002. Springer.
-
(2002)
LNAI
, vol.2375
, pp. 319-333
-
-
Manner, S.1
Meir, R.2
Zhang, T.3
-
124
-
-
26944434501
-
-
PhD thesis, Australian National University, September
-
L. Mason. Margins and Combined Classifiers. PhD thesis, Australian National University, September 1999.
-
(1999)
Margins and Combined Classifiers
-
-
Mason, L.1
-
125
-
-
4243481581
-
-
Technical report, Department of Systems Engineering, Australian National University
-
L. Mason, P.L. Bartlett, and J. Baxter. Improved generalization through explicit optimization of margins. Technical report, Department of Systems Engineering, Australian National University, 1998.
-
(1998)
Improved Generalization Through Explicit Optimization of Margins
-
-
Mason, L.1
Bartlett, P.L.2
Baxter, J.3
-
126
-
-
0002550596
-
Functional gradient techniques for combining hypotheses
-
A. J. Smola, P.L. Bartlett, B. Schölkopf, and C. Schuurmans, editors, MIT Press, Cambridge, MA
-
L. Mason, J. Baxter, P.L. Bartlett, and M. Prean. Functional gradient techniques for combining hypotheses. In A. J. Smola, P.L. Bartlett, B. Schölkopf, and C. Schuurmans, editors, Advances in Large Margin Classifiers. MIT Press, Cambridge, MA, 1999.
-
(1999)
Advances in Large Margin Classifiers
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.L.3
Prean, M.4
-
127
-
-
0002550596
-
Functional gradient techniques for combining hypotheses
-
A. J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, MIT Press, Cambridge, MA
-
L. Mason, J. Baxter, P.L. Bartlett, and M. Prean. Functional gradient techniques for combining hypotheses. In A. J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 221-247. MIT Press, Cambridge, MA, 2000.
-
(2000)
Advances in Large Margin Classifiers
, pp. 221-247
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.L.3
Prean, M.4
-
129
-
-
0001919730
-
Localized boosting
-
San Francisco, Morgan Kaufmann
-
R. Meir, R. El-Yaniv, and Shai Ben-David. Localized boosting. In Proc. COLT, pages 190-199, San Francisco, 2000. Morgan Kaufmann.
-
(2000)
Proc. COLT
, pp. 190-199
-
-
Meir, R.1
El-Yaniv, R.2
Ben-David, S.3
-
131
-
-
0001500115
-
Functions of positive and negative type and their connection with the theory of integral equations
-
J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. Roy. Soc. London, A 209:415-446, 1909.
-
(1909)
Philos. Trans. Roy. Soc. London, A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
132
-
-
84957030794
-
Tuning cost-sensitive boosting and its application to melanoma diagnosis
-
J. Kittler and F. Roli, editors, Proceedings of the 2nd Internationa Workshop on Multiple Classifier Systems MCS2001, Springer
-
S. Merler, C. Furlanello, B. Larcher, and A. Sboner. Tuning cost-sensitive boosting and its application to melanoma diagnosis. In J. Kittler and F. Roli, editors, Proceedings of the 2nd Internationa Workshop on Multiple Classifier Systems MCS2001, volume 2096 of LNCS, pages 32-42. Springer, 2001.
-
(2001)
LNCS
, vol.2096
, pp. 32-42
-
-
Merler, S.1
Furlanello, C.2
Larcher, B.3
Sboner, A.4
-
133
-
-
0000902690
-
The effective number of parameters: An analysis of generalization and regularization in non-linear learning systems
-
S. J. Hanson J. Moody and R. P. Lippman, editors, San Mateo, CA, Morgan Kaufman
-
J. Moody. The effective number of parameters: An analysis of generalization and regularization in non-linear learning systems. In S. J. Hanson J. Moody and R. P. Lippman, editors, Advances in Neural information processings systems, volume 4, pages 847-854, San Mateo, CA, 1992. Morgan Kaufman.
-
(1992)
Advances in Neural Information Processings Systems
, vol.4
, pp. 847-854
-
-
Moody, J.1
-
134
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12(2):181-201, 2001.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Müller, K.-R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
135
-
-
0028544395
-
Network information criterion - Determining the number of hidden units for an artificial neural network model
-
N. Murata, S. Amari, and S. Yoshizawa. Network information criterion - determining the number of hidden units for an artificial neural network model. IEEE Transactions on Neural Networks, 5:865-872, 1994.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, pp. 865-872
-
-
Murata, N.1
Amari, S.2
Yoshizawa, S.3
-
137
-
-
84945298125
-
A robust boosting algorithm
-
Proc. 13th European Conference on Machine Learning, Helsinki, Springer Verlag
-
Richard Nock and Patrice Lefaucheur. A robust boosting algorithm. In Proc. 13th European Conference on Machine Learning, volume LNAI 2430, Helsinki, 2002. Springer Verlag.
-
(2002)
LNAI
, vol.2430
-
-
Nock, R.1
Lefaucheur, P.2
-
138
-
-
0342749314
-
An asymptotic analysis of AdaBoost in the binary classification case
-
L. Niklasson, M. Bodén, and T. Ziemke, editors, March
-
T. Onoda, G. Rätsch, and K.-R. Müller. An asymptotic analysis of AdaBoost in the binary classification case. In L. Niklasson, M. Bodén, and T. Ziemke, editors, Proc. of the Int. Conf. on Artificial Neural Networks (ICANN'98), pages 195-200, March 1998.
-
(1998)
Proc. of the Int. Conf. on Artificial Neural Networks (ICANN'98)
, pp. 195-200
-
-
Onoda, T.1
Rätsch, G.2
Müller, K.-R.3
-
139
-
-
0005977611
-
A non-intrusive monitoring system for household electric appliances with inverters
-
H. Bothe and R. Rojas, editors, I Berlin, ICSC Academic Press Canada/Switzerland
-
T. Onoda, G. Rätsch, and K.-R. Müller. A non-intrusive monitoring system for household electric appliances with inverters. In H. Bothe and R. Rojas, editors, I Proc. of NC'2000, Berlin, 2000. ICSC Academic Press Canada/Switzerland.
-
(2000)
Proc. of NC'2000
-
-
Onoda, T.1
Rätsch, G.2
Müller, K.-R.3
-
140
-
-
14344254250
-
Featureboost: A meta-learning algorithm that improves model robustness
-
Morgan Kaufmann
-
J. O'Sullivan, J. Langford, R. Caruana, and A. Blum. Featureboost: A meta-learning algorithm that improves model robustness. In Proceedings, 17th ICML. Morgan Kaufmann, 2000.
-
(2000)
Proceedings, 17th ICML
-
-
O'Sullivan, J.1
Langford, J.2
Caruana, R.3
Blum, A.4
-
141
-
-
0035789318
-
Experimental comparisons of online and batch versions of bagging and boosting
-
N. Oza and S. Russell. Experimental comparisons of online and batch versions of bagging and boosting. In Proc. KDD-01, 2001.
-
(2001)
Proc. KDD-01
-
-
Oza, N.1
Russell, S.2
-
143
-
-
0025056697
-
Regularization algorithms for learning that are equivalent to multilayer networks
-
T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247:978-982, 1990.
-
(1990)
Science
, vol.247
, pp. 978-982
-
-
Poggio, T.1
Girosi, F.2
-
146
-
-
4243791869
-
-
Master's thesis, Dep. of Computer Science, University of Potsdam, April In German
-
G. Rätsch. Ensemble learning methods for classification. Master's thesis, Dep. of Computer Science, University of Potsdam, April 1998. In German.
-
(1998)
Ensemble Learning Methods for Classification
-
-
Rätsch, G.1
-
147
-
-
0004311187
-
-
PhD thesis, University of Potsdam, Computer Science Dept., August-Bebel-Str. 89, 14482 Potsdam, Germany, October
-
G. Rätsch. Robust Boosting via Convex Optimization. PhD thesis, University of Potsdam, Computer Science Dept., August-Bebel-Str. 89, 14482 Potsdam, Germany, October 2001.
-
(2001)
Robust Boosting Via Convex Optimization
-
-
Rätsch, G.1
-
148
-
-
35248860949
-
Robustes boosting durch konvexe optimierung
-
D. Wagner et al., editor, Ausgezeichnete Informatikdissertationen 2001, Bonner Köllen
-
G. Rätsch. Robustes boosting durch konvexe optimierung. In D. Wagner et al., editor, Ausgezeichnete Informatikdissertationen 2001, volume D-2 of GI-Edition - Lecture Notes in Informatics (LNI), pages 125-136. Bonner Köllen, 2002.
-
(2002)
GI-Edition - Lecture Notes in Informatics (LNI)
, vol.D-2
, pp. 125-136
-
-
Rätsch, G.1
-
149
-
-
0036643047
-
Sparse regression ensembles in infinite and finite hypothesis spaces
-
Special Issue on New Methods for Model Selection and Model Combination. Also NeuroCOLT2 Technical Report NC-TR-2000-085
-
G. Rätsch, A. Demiriz, and K. Bennett. Sparse regression ensembles in infinite and finite hypothesis spaces. Machine Learning, 48(1-3):193-221, 2002. Special Issue on New Methods for Model Selection and Model Combination. Also NeuroCOLT2 Technical Report NC-TR-2000-085.
-
(2002)
Machine Learning
, vol.48
, Issue.1-3
, pp. 193-221
-
-
Rätsch, G.1
Demiriz, A.2
Bennett, K.3
-
150
-
-
0036709275
-
Constructing boosting algorithms from SVMs: An application to one-class classification
-
September In press. Earlier version is GMD TechReport No. 119, 2000
-
G. Rätsch, S. Mika, B. Schölkopf, and K.-R. Müller. Constructing boosting algorithms from SVMs: an application to one-class classification. IEEE PAMI, 24(9), September 2002. In press. Earlier version is GMD TechReport No. 119, 2000.
-
(2002)
IEEE PAMI
, vol.24
, Issue.9
-
-
Rätsch, G.1
Mika, S.2
Schölkopf, B.3
Müller, K.-R.4
-
151
-
-
0005011124
-
-
NeuroCOLT2 Technical Report 98, Royal Holloway College, London, August A short version appeared in NIPS 14, MIT Press
-
G. Rätsch, S. Mika, and M.K. Warmuth. On the convergence of leveraging. NeuroCOLT2 Technical Report 98, Royal Holloway College, London, August 2001. A short version appeared in NIPS 14, MIT Press, 2002.
-
(2001)
On the Convergence of Leveraging
-
-
Rätsch, G.1
Mika, S.2
Warmuth, M.K.3
-
152
-
-
48849114845
-
On the convergence of leveraging
-
T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, In press. Longer version also I NeuroCOLT Technical Report NC-TR-2001-098
-
G. Rätsch, S. Mika, and M.K. Warmuth. On the convergence of leveraging. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural I information processings systems, volume 14, 2002. In press. Longer version also I NeuroCOLT Technical Report NC-TR-2001-098.
-
(2002)
Advances in Neural I Information Processings Systems
, vol.14
-
-
Rätsch, G.1
Mika, S.2
Warmuth, M.K.3
-
153
-
-
0342502195
-
Soft margins for AdaBoost
-
March also NeuroCOLT Technical Report NC-TR-1998-021
-
G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learning, 42(3):287-320, March 2001. also NeuroCOLT Technical Report NC-TR-1998-021.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
-
154
-
-
0002829165
-
Robust ensemble learning
-
A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, MIT Press, Cambridge, MA
-
G. Rätsch, B. Schölkopf, A.J. Smola, S. Mika, T. Onoda, and K.-R. Müller. Robust ensemble learning. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 207-219. MIT Press, Cambridge, MA, 2000.
-
(2000)
Advances in Large Margin Classifiers
, pp. 207-219
-
-
Rätsch, G.1
Schölkopf, B.2
Smola, A.J.3
Mika, S.4
Onoda, T.5
Müller, K.-R.6
-
155
-
-
84899023418
-
Adapting codes and embeddings for polychotomies
-
MIT Press, accepted
-
G. Rätsch, A.J. Smola, and S. Mika. Adapting codes and embeddings for polychotomies. In NIPS, volume 15. MIT Press, 2003. accepted.
-
(2003)
NIPS
, vol.15
-
-
Rätsch, G.1
Smola, A.J.2
Mika, S.3
-
156
-
-
0000897188
-
Barrier boosting
-
San Francisco, Morgan Kaufmann
-
G. Rätsch, M. Warmuth, S. Mika, T. Onoda, S. Lemm, and K.-R. Müller. Barrier boosting. In Proc. COLT, pages 170-179, San Francisco, 2000. Morgan Kaufmann.
-
(2000)
Proc. COLT
, pp. 170-179
-
-
Rätsch, G.1
Warmuth, M.2
Mika, S.3
Onoda, T.4
Lemm, S.5
Müller, K.-R.6
-
157
-
-
84937423775
-
Maximizing the margin with boosting
-
Proc. COLT, Sydney, Springer
-
G. Rätsch and M.K. Warmuth. Maximizing the margin with boosting. In Proc. COLT, volume 2375 of LNAI, pages 319-333, Sydney, 2002. Springer.
-
(2002)
LNAI
, vol.2375
, pp. 319-333
-
-
Rätsch, G.1
Warmuth, M.K.2
-
158
-
-
0002311782
-
Boosting methodology for regression problems
-
D. Heckerman and J. Whittaker, editors
-
G. Ridgeway, D. Madigan, and T. Richardson. Boosting methodology for regression problems. In D. Heckerman and J. Whittaker, editors, Proceedings of Artificial Intelligence and Statistics '99, pages 152-161, 1999.
-
(1999)
Proceedings of Artificial Intelligence and Statistics '99
, pp. 152-161
-
-
Ridgeway, G.1
Madigan, D.2
Richardson, T.3
-
159
-
-
0018015137
-
Modeling by shortest data description
-
J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471, 1978.
-
(1978)
Automatica
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
161
-
-
0036293687
-
Combining prior knowledge and boosting for call classification in spoken language dialogue
-
M. Rochery, R. Schapire, M. Rahim, N. Gupta, G. Riccardi, S. Bangalore, H. Alshawi, and S. Douglas. Combining prior knowledge and boosting for call classification in spoken language dialogue. In International Conference on Accoustics, Speech and Signal Processing, 2002.
-
(2002)
International Conference on Accoustics, Speech and Signal Processing
-
-
Rochery, M.1
Schapire, R.2
Rahim, M.3
Gupta, N.4
Riccardi, G.5
Bangalore, S.6
Alshawi, H.7
Douglas, S.8
-
163
-
-
0025448521
-
The strength of weak learnability
-
R.E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
167
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
October
-
R.E. Schapire, Y. Freund, P.L. Bartlett, and W. S. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686, October 1998.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.L.3
Lee, W.S.4
-
168
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
December
-
R.E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297-336, December 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
170
-
-
0033905095
-
Boostexter: A boosting-based system for text categorization
-
R.E. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization. Machine Learning, 39(2/3):135-168, 2000.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
172
-
-
27444435127
-
Modeling auction price uncertainty using boosting-based conditional density estimations noise
-
R.E. Schapire, P. Stone, D. McAllester, M.L. Littman, and J.A. Csirik. Modeling auction price uncertainty using boosting-based conditional density estimations noise. In Proceedings of the Proceedings of the Nineteenth International Conference on Machine Learning, 2002.
-
(2002)
Proceedings of the Proceedings of the Nineteenth International Conference on Machine Learning
-
-
Schapire, R.E.1
Stone, P.2
Mcallester, D.3
Littman, M.L.4
Csirik, J.A.5
-
173
-
-
84865131152
-
A generalized representer theorem
-
D.P. Helmbold and R.C. Williamson, editors, COLT/EuroCOLT, Springer
-
B. Schölkopf, R. Herbrich, and A.J. Smola. A generalized representer theorem. In D.P. Helmbold and R.C. Williamson, editors, COLT/EuroCOLT, volume 2111 of LNAI, pages 416-426. Springer, 2001.
-
(2001)
LNAI
, vol.2111
, pp. 416-426
-
-
Schölkopf, B.1
Herbrich, R.2
Smola, A.J.3
-
174
-
-
0038091288
-
-
TR 87, Microsoft Research, Redmond, WA
-
B. Schölkopf, J. Platt, J. Shawe-Taylor, A.J. Smola, and R.C. Williamson. Estimating the support of a high-dimensional distribution. TR 87, Microsoft Research, Redmond, WA, 1999.
-
(1999)
Estimating the Support of a High-dimensional Distribution
-
-
Schölkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
175
-
-
17444438778
-
New support vector algorithms
-
also NeuroCOLT Technical Report NC-TR-1998-031
-
B. Schölkopf, A. Smola, R.C. Williamson, and P.L. Bartlett. New support vector algorithms. Neural Computation, 12:1207-1245, 2000. also NeuroCOLT Technical Report NC-TR-1998-031.
-
(2000)
Neural Computation
, vol.12
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.2
Williamson, R.C.3
Bartlett, P.L.4
-
177
-
-
0034243471
-
Boosting neural networks
-
H. Schwenk and Y. Bengio. Boosting neural networks. Neural Computation, 12(8):1869-1887, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.8
, pp. 1869-1887
-
-
Schwenk, H.1
Bengio, Y.2
-
178
-
-
2542505114
-
PAC analogoues of perceptron and winnow via boosting the margin
-
San Francisco, Morgan Kaufmann
-
R.A. Servedio. PAC analogoues of perceptron and winnow via boosting the margin. In Proc. COLT, pages 148-157, San Francisco, 2000. Morgan Kaufmann.
-
(2000)
Proc. COLT
, pp. 148-157
-
-
Servedio, R.A.1
-
180
-
-
0032166068
-
Structural risk minimization over data-dependent hierarchies
-
September
-
J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, and M. Anthony. Structural risk minimization over data-dependent hierarchies. IEEE Trans. Inf. Theory, 44(5):1926-1940, September 1998.
-
(1998)
IEEE Trans. Inf. Theory
, vol.44
, Issue.5
, pp. 1926-1940
-
-
Shawe-Taylor, J.1
Bartlett, P.L.2
Williamson, R.C.3
Anthony, M.4
-
183
-
-
14544284103
-
Towards a strategy for boosting regressors
-
A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances Cambridge, MA, MIT Press
-
J. Shawe-Taylor and G. Karakoulas. Towards a strategy for boosting regressors. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 247-258, Cambridge, MA, 2000. MIT Press.
-
(2000)
Large Margin Classifiers
, pp. 247-258
-
-
Shawe-Taylor, J.1
Karakoulas, G.2
-
184
-
-
0006413386
-
Leveraged vector machines
-
S.A. Solla, T.K. Leen, and K.-R. Müller, editors, MIT Press
-
Y. Singer. Leveraged vector machines. In S.A. Solla, T.K. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems, volume 12, pages 610-616. MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 610-616
-
-
Singer, Y.1
-
185
-
-
0001986205
-
Data domain description by support vectors
-
M. Verleysen, editor, Brussels, D. Facto Press
-
D. Tax and R. Duin. Data domain description by support vectors. In M. Verleysen, editor, Proc. ESANN, pages 251-256, Brussels, 1999. D. Facto Press.
-
(1999)
Proc. ESANN
, pp. 251-256
-
-
Tax, D.1
Duin, R.2
-
186
-
-
84945279418
-
Boosting density function estimators
-
PFOC. 13th European Conference on Machine Learning, Helsinki, Springer Verlag
-
F. Thollard, M. Sebban, and P. Ezequel. Boosting density function estimators. In PFOC. 13th European Conference on Machine Learning, volume LNAI 2430, pages 431-443, Helsinki, 2002. Springer Verlag.
-
(2002)
LNAI
, vol.2430
, pp. 431-443
-
-
Thollard, F.1
Sebban, M.2
Ezequel, P.3
-
188
-
-
0036130853
-
Subspace information criterion for non-quadratic regularizers - Model selection for sparse regressors
-
K. Tsuda, M. Sugiyama, and K.-R. Müller. Subspace information criterion for non-quadratic regularizers - model selection for sparse regressors. IEEE Transactions on Neural Networks, 13(1):70-80, 2002.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.1
, pp. 70-80
-
-
Tsuda, K.1
Sugiyama, M.2
Müller, K.-R.3
-
189
-
-
0021518106
-
A theory of the learnable
-
November
-
L.G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, November 1984.
-
(1984)
Communications of the ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.G.1
-
193
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probab. and its Applications, 16(2):264-280, 1971.
-
(1971)
Theory of Probab. and Its Applications
, vol.16
, Issue.2
, pp. 264-280
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
-
194
-
-
21244466146
-
Zur Theorie der Gesellschaftsspiele
-
J. von Neumann. Zur Theorie der Gesellschaftsspiele. Math. Ann., 100:295-320, 1928.
-
(1928)
Math. Ann.
, vol.100
, pp. 295-320
-
-
Von Neumann, J.1
-
196
-
-
84898985725
-
A gradient-based boosting algorithm for regression problems
-
T.K. Leen, T.G. Dietterich, and V. Tresp, editors, MIT Press
-
R. Zemel and T. Pitassi. A gradient-based boosting algorithm for regression problems. In T.K. Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems, volume 13, pages 696-702. MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 696-702
-
-
Zemel, R.1
Pitassi, T.2
-
198
-
-
0005085813
-
A general greedy approximation algorithm with applications
-
MIT Press
-
T. Zhang. A general greedy approximation algorithm with applications. In Advances in Neural Information Processing Systems, volume 14. MIT Press, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
-
-
Zhang, T.1
-
199
-
-
0036158505
-
On the dual formulation of regularized linear systems with convex risks
-
T. Zhang. On the dual formulation of regularized linear systems with convex risks. Machine Learning, 46:91-129, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 91-129
-
-
Zhang, T.1
-
201
-
-
0036146402
-
Lung cancer cell identification based on artificial neural network ensembles
-
Z.-H. Zhou, Y. Jiang, Y.-B. Yang, and S.-F. Chen. Lung cancer cell identification based on artificial neural network ensembles. Artificial Intelligence in Medicine, 24(1):25-36, 2002.
-
(2002)
Artificial Intelligence in Medicine
, vol.24
, Issue.1
, pp. 25-36
-
-
Zhou, Z.-H.1
Jiang, Y.2
Yang, Y.-B.3
Chen, S.-F.4
|