메뉴 건너뛰기




Volumn 2111, Issue , 2001, Pages 473-489

Smooth boosting and learning with malicious noise

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER SCIENCE; COMPUTERS;

EID: 84943243676     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-44581-1_31     Document Type: Conference Paper
Times cited : (25)

References (26)
  • 1
    • 0032047249 scopus 로고    scopus 로고
    • Specification and simulation of statistical query algorithms for efficiency and noise tolerance
    • J. Aslam and S. Decatur. Specification and simulation of statistical query algorithms for efficiency and noise tolerance, J. Comput. Syst. Sci. 56 (1998), 191-208.
    • (1998) J. Comput. Syst. Sci , vol.56 , pp. 191-208
    • Aslam, J.1    Decatur, S.2
  • 2
    • 0346044653 scopus 로고    scopus 로고
    • Learning nested differences in the presence of malicious noise
    • P. Auer. Learning nested differences in the presence of malicious noise, Theoretical Computer Science 185(1) (1997), 159-175.
    • (1997) Theoretical Computer Science , vol.185 , Issue.1 , pp. 159-175
    • Auer, P.1
  • 3
    • 0042376985 scopus 로고    scopus 로고
    • On-line learning with malicious noise and the closure algorithm
    • P. Auer and N. Cesa-Bianchi. On-line learning with malicious noise and the closure algorithm, Ann. Math. and Artif. Intel. 23 (1998), 83-99.
    • (1998) Ann. Math. and Artif. Intel , vol.23 , pp. 83-99
    • Auer, P.1    Cesa-Bianchi, N.2
  • 4
    • 0030165580 scopus 로고    scopus 로고
    • Fat-shattering and the learnability of real-valued functions
    • P. Bartlett, P. Long and R. Williamson. Fat-shattering and the learnability of real-valued functions, J. Comput. Syst. Sci., 52(3) (1996), 434-452.
    • (1996) J. Comput. Syst. Sci. , vol.52 , Issue.3 , pp. 434-452
    • Bartlett, P.1    Long, P.2    Williamson, R.3
  • 5
    • 0002094343 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and other pattern classifiers
    • in B. Scholkopf, C.J.C. Burges, and A.J. Smola
    • P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machines and other pattern classifiers, in B. Scholkopf, C.J.C. Burges, and A.J. Smola, eds, Advances in Kernel Methods – Support Vector Learning, (1999), 43-54.
    • (1999) Advances in Kernel Methods – Support Vector Learning , pp. 43-54
    • Bartlett, P.1    Shawe-Taylor, J.2
  • 6
    • 0010572906 scopus 로고    scopus 로고
    • Sampleefficient strategies for learning in the presence of noise
    • N. Cesa-Bianchi, E. Dichterman, P. Fischer, E. Shamir and H.U. Simon. Sampleefficient strategies for learning in the presence of noise, J. ACM 46(5) (1999), 684-719.
    • (1999) J. ACM , vol.46 , Issue.5 , pp. 684-719
    • Cesa-Bianchi, N.1    Dichterman, E.2    Fischer, P.3    Shamir, E.4    Simon, H.U.5
  • 8
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2) (2000), 139-158.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-158
    • Dietterich, T.G.1
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55(1) (1997), 119-139.
    • (1997) J. Comput. Syst. Sci , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 16
    • 0027640858 scopus 로고
    • Learning in the presence of malicious errors
    • M. Kearns and M. Li. Learning in the presence of malicious errors, SIAM J. Comput. 22(4) (1993), 807-837.
    • (1993) SIAM J. Comput , vol.22 , Issue.4 , pp. 807-837
    • Kearns, M.1    Li, M.2
  • 17
    • 0028324717 scopus 로고
    • Cryptographic limitations on learning boolean formulae and finite automata
    • Also “Proc. 21st Symp. on Theor. of Comp.” (1989), 433-444
    • M. Kearns, L. Valiant. Cryptographic limitations on learning boolean formulae and finite automata, J. ACM 41(1) (1994), 67-95. Also “Proc. 21st Symp. on Theor. of Comp.” (1989), 433-444.
    • (1994) J. ACM , vol.41 , Issue.1 , pp. 67-95
    • Kearns, M.1    Valiant, L.2
  • 19
    • 0000511449 scopus 로고
    • Redundant noisy attributes, attribute errors, and linear-threshold learning using winnow
    • N. Littlestone. Redundant noisy attributes, attribute errors, and linear-threshold learning using winnow, in “Proc. Fourth Workshop on Computational Learning Theory,” (1991), 147-156.
    • (1991) Proc. Fourth Workshop on Computational Learning Theory,” , pp. 147-156
    • Littlestone, N.1
  • 20
    • 0041763189 scopus 로고    scopus 로고
    • Learning conjunctions with noise under product distributions
    • Y. Mansour and M. Parnas. Learning conjunctions with noise under product distributions, Inf. Proc. Let. 68(4) (1998), 189-196.
    • (1998) Inf. Proc. Let , vol.68 , Issue.4 , pp. 189-196
    • Mansour, Y.1    Parnas, M.2
  • 22
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. Schapire, Y. Freund, P. Bartlett and W.S. Lee. Boosting the margin: a new explanation for the effectiveness of voting methods, Annals of Statistics 26(5) (1998), 1651-1686.
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 23


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.