메뉴 건너뛰기




Volumn 1572, Issue , 1999, Pages 18-33

A geometric approach to leveraging weak learners

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION THEORY; GRADIENT METHODS;

EID: 84947765278     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-49097-3_3     Document Type: Conference Paper
Times cited : (14)

References (16)
  • 1
    • 0005809110 scopus 로고
    • Polynomial learnability of probabilistic concepts with respect to the Kullback-Leibler divergence
    • San Mateo, CA, Morgan Kaufmann
    • N. Abe, J. Takeuchi, and M. K. Warmuth. Polynomial learnability of probabilistic concepts with respect to the Kullback-Leibler divergence. In Proc. 4th Annu. Workshop on Comput. Learning Theory, pages 277-289, San Mateo, CA, 1991. Morgan Kaufmann.
    • (1991) Proc. 4th Annu. Workshop on Comput. Learning Theory , pp. 277-289
    • Abe, N.1    Takeuchi, J.2    Warmuth, M.K.3
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Leo Breiman. Bagging predictors. Machine Learning, 24(2): 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0004198448 scopus 로고    scopus 로고
    • Technical Report 486, Department of Statistics, University of California, Berkeley
    • Leo Breiman. Arcing the edge. Technical Report 486, Department of Statistics, University of California, Berkeley, 1997. Available at http://www. stat. berkeley. edu.
    • (1997) Arcing the edge
    • Breiman, L.1
  • 5
    • 0003619255 scopus 로고    scopus 로고
    • Technical Report 460, Department of Statistics, University of California, Berkeley
    • Leo Breiman. Bias, variance, and arcing classifiers. Technical Report 460, Department of Statistics, University of California, Berkeley, 1997. Available at http://www. stat. berkeley. edu.
    • (1997) Bias, variance, and arcing classifiers
    • Breiman, L.1
  • 6
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • September Also appeared in COLT90
    • Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2): 256-285, September 1995. Also appeared in COLT90.
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 7
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • August
    • Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences, 55(1): 119-139, August 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 9
    • 0030422272 scopus 로고    scopus 로고
    • Data mining using MLC++: A machine learning library in C++
    • IEEE Computer Society Press
    • Ron Kohavi, Dan Sommerfield, and James Dougherty. Data mining using MLC++: A machine learning library in C++. In Tools with Artificial Intelligence. IEEE Computer Society Press, 1996. http://www. sgi. com/Technology/mlc.
    • (1996) Tools with Artificial Intelligence
    • Kohavi, R.1    Sommerfield, D.2    Dougherty, J.3
  • 11
    • 4243481581 scopus 로고    scopus 로고
    • Technical report, Department of Systems Engineering, Research School of Information Sciences and Engineering, Australian National University
    • Llew Mason, Peter Bartlett, and Jonathan Baxter. Improved generalization through explicit optimization of margins. Technical report, Department of Systems Engineering, Research School of Information Sciences and Engineering, Australian National University, 1998.
    • (1998) Improved generalization through explicit optimization of margins
    • Mason, L.1    Bartlett, P.2    Baxter, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.