메뉴 건너뛰기




Volumn 12, Issue 8, 2000, Pages 1869-1887

Boosting neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; HANDWRITING;

EID: 0034243471     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976600300015178     Document Type: Article
Times cited : (272)

References (38)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36, 105-139.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 0342656337 scopus 로고
    • Parallelization of a neural learning algorithm on a hypercube
    • Amsterdam: Elsievier Science, North-Holland
    • Bourrely, J. (1989). Parallelization of a neural learning algorithm on a hypercube. In Hypercube and distributed computers (pp. 219-229). Amsterdam: Elsievier Science, North-Holland.
    • (1989) Hypercube and Distributed Computers , pp. 219-229
    • Bourrely, J.1
  • 3
    • 0030211964 scopus 로고
    • Bagging predictors
    • Breiman, L. (1994). Bagging predictors. Machine Learning, 24(2), 123-140.
    • (1994) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 80555137399 scopus 로고    scopus 로고
    • Berkeley: Statistics Department, University of California at Berkeley
    • Breiman, L. (1997a). Arcing the edge (Tech. Rep. No. 486). Berkeley: Statistics Department, University of California at Berkeley.
    • (1997) Arcing the Edge (Tech. Rep. No. 486) , vol.486
    • Breiman, L.1
  • 7
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman, L. (1998). Arcing classifiers. Annuals of Statistics, 26(3), 801-849.
    • (1998) Annuals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 8
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7), 1895-1924.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.1
  • 9
    • 0001823341 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • forthcoming Available online at
    • Dietterich, T. G. (forthcoming). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning. Available online at: ftp://ftp.cs.orst.edu/pub/ tgd/papers/tr-randomized-c4.ps.gz.
    • Machine Learning
    • Dietterich, T.G.1
  • 10
    • 85156217048 scopus 로고    scopus 로고
    • Boosting decision trees
    • D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
    • Drucker, H., & Cortes, C. (1996). Boosting decision trees. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems (pp. 479-485). Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , pp. 479-485
    • Drucker, H.1    Cortes, C.2
  • 12
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121(2), 256-285.
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 15
    • 0031211090 scopus 로고    scopus 로고
    • A decision theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. E. (1997). A decision theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Science, 55(1), 119-139.
    • (1997) Journal of Computer and System Science , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 16
    • 0002267135 scopus 로고    scopus 로고
    • Adaptive game playing using multiplicative weights
    • Freund, Y., & Schapire, R. E. (1999). Adaptive game playing using multiplicative weights. Games and Economic Behavior, 29, 79-103.
    • (1999) Games and Economic Behavior , vol.29 , pp. 79-103
    • Freund, Y.1    Schapire, R.E.2
  • 18
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4(1), 1-58.
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 22
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation and active learning
    • G. Tesauro, D. S. Touretzky, & T. K. Leen, (Eds.), Cambridge, MA: MIT Press
    • Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation and active learning. In G. Tesauro, D. S. Touretzky, & T. K. Leen, (Eds.), Advances in neural information processing systems, 7, (pp. 231-238). Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 24
    • 84879873079 scopus 로고    scopus 로고
    • Direct optimization of margins improves generalization in combined classifiers
    • M. S. Kearns, S. Solla, & D. Cohn (Eds.), Cambridge, MA: MIT Press
    • Mason, L., & Baxter, P. B. J. (1999). Direct optimization of margins improves generalization in combined classifiers. In M. S. Kearns, S. Solla, & D. Cohn (Eds.), Advances in neural information processing systems, 11, Cambridge, MA: MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Mason, L.1    Baxter, P.B.J.2
  • 25
    • 0347994321 scopus 로고
    • Supervised learning on large redundant training sets
    • New York: IEEE Press
    • Moller, M. (1992). Supervised learning on large redundant training sets. In Neural networks for signal processing 2. New York: IEEE Press.
    • (1992) Neural Networks for Signal Processing , vol.2
    • Moller, M.1
  • 28
    • 0345159806 scopus 로고
    • Putting it all together: Methods for combining neural networks
    • J. D. Cowan, G. Tesauro, & J. Alspector, (Eds.), San Mateo, CA: Morgan Kaufmann
    • Perrone, M. P. (1994). Putting it all together: Methods for combining neural networks. In J. D. Cowan, G. Tesauro, & J. Alspector, (Eds.), Advances in neural information processing systems, 6, (pp. 1188-1189). San Mateo, CA: Morgan Kaufmann.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 1188-1189
    • Perrone, M.P.1
  • 31
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 35
    • 84956609453 scopus 로고    scopus 로고
    • Adaboosting neural networks: Application to on-line character recognition
    • Berlin: Springer-Verlag
    • Schwenk, H., & Bengio, Y. (1997). Adaboosting neural networks: Application to on-line character recognition. In International Conference on Artificial Neural Networks (pp. 967-972). Berlin: Springer-Verlag.
    • (1997) International Conference on Artificial Neural Networks , pp. 967-972
    • Schwenk, H.1    Bengio, Y.2
  • 36
    • 84898928884 scopus 로고    scopus 로고
    • Training methods for adaptive boosting of neural networks
    • M. I. Jordan, M. J. Kearns, & S. A. Solla, (Eds.), Cambridge, MA: MIT Press
    • Schwenk, H., & Bengio, Y. (1998). Training methods for adaptive boosting of neural networks. In M. I. Jordan, M. J. Kearns, & S. A. Solla, (Eds.), Advances in neural information processing systems, 10 (pp. 647-653). Cambridge, MA: MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 647-653
    • Schwenk, H.1    Bengio, Y.2
  • 37
    • 0040611763 scopus 로고    scopus 로고
    • Constraint tangent distance for online character recognition
    • New York: IEEE Computer Society Press
    • Schwenk, H., & Milgram, M. (1996). Constraint tangent distance for online character recognition. In International Conference on Pattern Recognition (pp. D:520-524). New York: IEEE Computer Society Press.
    • (1996) International Conference on Pattern Recognition
    • Schwenk, H.1    Milgram, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.