-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36, 105-139.
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
0342656337
-
Parallelization of a neural learning algorithm on a hypercube
-
Amsterdam: Elsievier Science, North-Holland
-
Bourrely, J. (1989). Parallelization of a neural learning algorithm on a hypercube. In Hypercube and distributed computers (pp. 219-229). Amsterdam: Elsievier Science, North-Holland.
-
(1989)
Hypercube and Distributed Computers
, pp. 219-229
-
-
Bourrely, J.1
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1994). Bagging predictors. Machine Learning, 24(2), 123-140.
-
(1994)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
80555137399
-
-
Berkeley: Statistics Department, University of California at Berkeley
-
Breiman, L. (1997a). Arcing the edge (Tech. Rep. No. 486). Berkeley: Statistics Department, University of California at Berkeley.
-
(1997)
Arcing the Edge (Tech. Rep. No. 486)
, vol.486
-
-
Breiman, L.1
-
7
-
-
0346786584
-
Arcing classifiers
-
Breiman, L. (1998). Arcing classifiers. Annuals of Statistics, 26(3), 801-849.
-
(1998)
Annuals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
8
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Dietterich, T. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7), 1895-1924.
-
(1998)
Neural Computation
, vol.10
, Issue.7
, pp. 1895-1924
-
-
Dietterich, T.1
-
9
-
-
0001823341
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
forthcoming Available online at
-
Dietterich, T. G. (forthcoming). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning. Available online at: ftp://ftp.cs.orst.edu/pub/ tgd/papers/tr-randomized-c4.ps.gz.
-
Machine Learning
-
-
Dietterich, T.G.1
-
10
-
-
85156217048
-
Boosting decision trees
-
D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
-
Drucker, H., & Cortes, C. (1996). Boosting decision trees. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems (pp. 479-485). Cambridge, MA: MIT Press.
-
(1996)
Advances in Neural Information Processing Systems
, pp. 479-485
-
-
Drucker, H.1
Cortes, C.2
-
11
-
-
0346733587
-
Comparison of machine learning classifiers to statistics and neural networks
-
Feng, C., Sutherland, A., King, R., Muggleton, S., & Henery, R. (1993). Comparison of machine learning classifiers to statistics and neural networks. In Proceedings of the Fourth International Workshop on Artificial Intelligence and Statistics (pp. 41-52).
-
(1993)
Proceedings of the Fourth International Workshop on Artificial Intelligence and Statistics
, pp. 41-52
-
-
Feng, C.1
Sutherland, A.2
King, R.3
Muggleton, S.4
Henery, R.5
-
12
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121(2), 256-285.
-
(1995)
Information and Computation
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
15
-
-
0031211090
-
A decision theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., & Schapire, R. E. (1997). A decision theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Science, 55(1), 119-139.
-
(1997)
Journal of Computer and System Science
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
16
-
-
0002267135
-
Adaptive game playing using multiplicative weights
-
Freund, Y., & Schapire, R. E. (1999). Adaptive game playing using multiplicative weights. Games and Economic Behavior, 29, 79-103.
-
(1999)
Games and Economic Behavior
, vol.29
, pp. 79-103
-
-
Freund, Y.1
Schapire, R.E.2
-
17
-
-
0003660631
-
-
Stanford: Department of Statistics, Stanford University
-
Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive logistic regression: A statistical view of boosting (Tech. Rep.). Stanford: Department of Statistics, Stanford University.
-
(1998)
Additive Logistic Regression: A Statistical View of Boosting (Tech. Rep.)
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
18
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4(1), 1-58.
-
(1992)
Neural Computation
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
22
-
-
85054435084
-
Neural network ensembles, cross validation and active learning
-
G. Tesauro, D. S. Touretzky, & T. K. Leen, (Eds.), Cambridge, MA: MIT Press
-
Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation and active learning. In G. Tesauro, D. S. Touretzky, & T. K. Leen, (Eds.), Advances in neural information processing systems, 7, (pp. 231-238). Cambridge, MA: MIT Press.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
24
-
-
84879873079
-
Direct optimization of margins improves generalization in combined classifiers
-
M. S. Kearns, S. Solla, & D. Cohn (Eds.), Cambridge, MA: MIT Press
-
Mason, L., & Baxter, P. B. J. (1999). Direct optimization of margins improves generalization in combined classifiers. In M. S. Kearns, S. Solla, & D. Cohn (Eds.), Advances in neural information processing systems, 11, Cambridge, MA: MIT Press.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
-
-
Mason, L.1
Baxter, P.B.J.2
-
25
-
-
0347994321
-
Supervised learning on large redundant training sets
-
New York: IEEE Press
-
Moller, M. (1992). Supervised learning on large redundant training sets. In Neural networks for signal processing 2. New York: IEEE Press.
-
(1992)
Neural Networks for Signal Processing
, vol.2
-
-
Moller, M.1
-
28
-
-
0345159806
-
Putting it all together: Methods for combining neural networks
-
J. D. Cowan, G. Tesauro, & J. Alspector, (Eds.), San Mateo, CA: Morgan Kaufmann
-
Perrone, M. P. (1994). Putting it all together: Methods for combining neural networks. In J. D. Cowan, G. Tesauro, & J. Alspector, (Eds.), Advances in neural information processing systems, 6, (pp. 1188-1189). San Mateo, CA: Morgan Kaufmann.
-
(1994)
Advances in Neural Information Processing Systems
, vol.6
, pp. 1188-1189
-
-
Perrone, M.P.1
-
30
-
-
85037496918
-
-
Egham, Surrey: Royal Holloway College, University of London
-
Rätsch, G., Onoda, T., & Müller, K.-R. (1998). Soft margins for AdaBoost (Tech. Rep. No. NC-TR-1998-021). Egham, Surrey: Royal Holloway College, University of London.
-
(1998)
Soft Margins for AdaBoost (Tech. Rep. No. Nc-tr-1998-021)
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
-
31
-
-
0025448521
-
The strength of weak learnability
-
Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197-227.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
33
-
-
0002595663
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1997). Boosting the margin: A new explanation for the effectiveness of voting methods. In Machine Learning: Proceedings of Fourteenth International Conference (pp. 322-330).
-
(1997)
Machine Learning: Proceedings of Fourteenth International Conference
, pp. 322-330
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
35
-
-
84956609453
-
Adaboosting neural networks: Application to on-line character recognition
-
Berlin: Springer-Verlag
-
Schwenk, H., & Bengio, Y. (1997). Adaboosting neural networks: Application to on-line character recognition. In International Conference on Artificial Neural Networks (pp. 967-972). Berlin: Springer-Verlag.
-
(1997)
International Conference on Artificial Neural Networks
, pp. 967-972
-
-
Schwenk, H.1
Bengio, Y.2
-
36
-
-
84898928884
-
Training methods for adaptive boosting of neural networks
-
M. I. Jordan, M. J. Kearns, & S. A. Solla, (Eds.), Cambridge, MA: MIT Press
-
Schwenk, H., & Bengio, Y. (1998). Training methods for adaptive boosting of neural networks. In M. I. Jordan, M. J. Kearns, & S. A. Solla, (Eds.), Advances in neural information processing systems, 10 (pp. 647-653). Cambridge, MA: MIT Press.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
, pp. 647-653
-
-
Schwenk, H.1
Bengio, Y.2
-
37
-
-
0040611763
-
Constraint tangent distance for online character recognition
-
New York: IEEE Computer Society Press
-
Schwenk, H., & Milgram, M. (1996). Constraint tangent distance for online character recognition. In International Conference on Pattern Recognition (pp. D:520-524). New York: IEEE Computer Society Press.
-
(1996)
International Conference on Pattern Recognition
-
-
Schwenk, H.1
Milgram, M.2
|