-
3
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 26(2):123-140, 1996.
-
(1996)
Machine Learning
, vol.26
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0003619255
-
-
Technical Report, Statistics Department, University of California, April
-
L. Breiman. Bias, variance, and arcing classifiers. Technical Report 460, Statistics Department, University of California, April 1996.
-
(1996)
Bias, Variance, and Arcing Classifiers
-
-
Breiman, L.1
-
5
-
-
0004198448
-
-
Technical Report, Statistics Department, University of California, June
-
L. Breiman. Arcing the edge. Technical Report 486, Statistics Department, University of California, June 1997.
-
(1997)
Arcing the Edge
-
-
Breiman, L.1
-
7
-
-
0003929807
-
-
Technical Report, Statistics Department, University of California, December
-
L. Breiman. Prediction games and arcing algorithms. Technical Report 504, Statistics Department, University of California, December 1997.
-
(1997)
Prediction Games and Arcing Algorithms
-
-
Breiman, L.1
-
8
-
-
0346786584
-
Arcing classifiers
-
L. Breiman. Arcing classifiers. Annals of Statistics, 26:801-849, 1998.
-
(1998)
Annals of Statistics
, vol.26
, pp. 801-849
-
-
Breiman, L.1
-
10
-
-
0041612447
-
Additive logistic regression
-
Discussion of the paper, by Jerome Friedman, Trevor Hastie and Robert Tibshirani
-
P. Bühlmann and B. Yu. Discussion of the paper "Additive Logistic Regression" by Jerome Friedman, Trevor Hastie and Robert Tibshirani. The Annals of Statistics, 28:377-386, 2000.
-
(2000)
The Annals of Statistics
, vol.28
, pp. 377-386
-
-
Bühlmann, P.1
Yu, B.2
-
15
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
September
-
Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256-285, September 1995.
-
(1995)
Information and Computation
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
18
-
-
0030419058
-
Game theory, on-line prediction and boosting
-
ACM Press, New York, NY
-
Y. Freund and R. E. Schapire. Game theory, on-line prediction and boosting. In Proc. 9th Annu. Conf. on Comput. Learning Theory, pages 325-332. ACM Press, New York, NY, 1996.
-
(1996)
Proc. 9th Annu. Conf. on Comput. Learning Theory
, pp. 325-332
-
-
Freund, Y.1
Schapire, R.E.2
-
19
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
August
-
Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, August 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
20
-
-
26844494532
-
Additive logistic regression: A statistical view of boosting
-
Discussion of the paper, by J. Friedman, T. Hastie and R. Tibshirani
-
Y. Freund and R. E. Schapire. Discussion of the paper "additive logistic regression: a statistical view of boosting" by J. Friedman, T. Hastie and R. Tibshirani. The Annals of Statistics, 38(2):391-393, 2000.
-
(2000)
The Annals of Statistics
, vol.38
, Issue.2
, pp. 391-393
-
-
Freund, Y.1
Schapire, R.E.2
-
21
-
-
0003660631
-
-
Technical report, Department of Statistics, Sequoia Hall, Stanford University, July
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Technical report, Department of Statistics, Sequoia Hall, Stanford University, July 1998.
-
(1998)
Additive Logistic Regression: A Statistical View of Boosting
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
22
-
-
0042112246
-
-
Technical Report, Department of Statistics, Northwestern University, November
-
W. Jiang. Process consistency for adaboost. Technical Report 00-05, Department of Statistics, Northwestern University, November 2000.
-
(2000)
Process Consistency for Adaboost
-
-
Jiang, W.1
-
28
-
-
0002550596
-
Functional gradient techniques for combining hypotheses
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, MIT Press, Cambridge, MA
-
L. Mason, J. Baxter, P. L. Bartlett, and M. Frean. Functional gradient techniques for combining hypotheses. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 221-247. MIT Press, Cambridge, MA, 1999.
-
(1999)
Advances in Large Margin Classifiers
, pp. 221-247
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.L.3
Frean, M.4
-
29
-
-
0025448521
-
The strength of weak learnability
-
R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
30
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
October
-
R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686, October 1998.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
|