메뉴 건너뛰기




Volumn 3, Issue 2, 2003, Pages 175-212

Algorithmic luckiness

Author keywords

[No Author keywords available]

Indexed keywords

INFORMATION SCIENCE; LEARNING ALGORITHMS; STATISTICAL METHODS; VECTORS;

EID: 0041965981     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: 10.1162/153244303765208368     Document Type: Article
Times cited : (41)

References (37)
  • 7
    • 84898936190 scopus 로고    scopus 로고
    • Algorithmic stability and generalization performance
    • T. K. Leen, T. G. Dietterich, and V. Tresp, editors. MIT Press
    • O. Bousquet and A. Elisseeff. Algorithmic stability and generalization performance. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 196-202. MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 196-202
    • Bousquet, O.1    Elisseeff, A.2
  • 8
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 13
    • 0042496029 scopus 로고
    • Sample compression, learnability, and the Vapnik Chervonenkis dimension
    • S. Floyd and M. Warmuth. Sample compression, learnability, and the Vapnik Chervonenkis dimension. Machine Learning, 27:1-36, 1995.
    • (1995) Machine Learning , vol.27 , pp. 1-36
    • Floyd, S.1    Warmuth, M.2
  • 17
    • 84894167296 scopus 로고    scopus 로고
    • A PAC-Bayesian margin bound for linear classifiers: Why SVMs work
    • T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Cambridge, MA. MIT Press
    • R. Herbrich and T. Graepel. A PAC-Bayesian margin bound for linear classifiers: Why SVMs work. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 224-230, Cambridge, MA, 2001. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 224-230
    • Herbrich, R.1    Graepel, T.2
  • 19
  • 22
    • 0041995194 scopus 로고
    • Relating data compression and learnability
    • University of California Santa Cruz
    • N. Littlestone and M. Warmuth. Relating data compression and learnability. Technical report, University of California Santa Cruz, 1986.
    • (1986) Technical Report
    • Littlestone, N.1    Warmuth, M.2
  • 23
    • 0030119952 scopus 로고    scopus 로고
    • Random approximants and neural networks
    • Y. Makovoz. Random approximants and neural networks. Journal of Approximation Theory, 85:98-109, 1996.
    • (1996) Journal of Approximation Theory , vol.85 , pp. 98-109
    • Makovoz, Y.1
  • 26
    • 11144273669 scopus 로고
    • The perception: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt. The perception: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6):386-408, 1958.
    • (1958) Psychological Review , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 27
    • 0013406706 scopus 로고    scopus 로고
    • Computing the Bayes kernel classifier
    • A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA. MIT Press
    • P. Ruján and M. Marchand. Computing the Bayes kernel classifier. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 329-347, Cambridge, MA, 2000. MIT Press.
    • (2000) Advances in Large Margin Classifiers , pp. 329-347
    • Ruján, P.1    Marchand, M.2
  • 28
    • 0001703864 scopus 로고
    • On the density of families of sets
    • N. Sauer. On the density of families of sets. Journal of Combinatorial Theory, 13:145-147, 1972.
    • (1972) Journal of Combinatorial Theory , vol.13 , pp. 145-147
    • Sauer, N.1
  • 31
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.1
  • 35
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2):264-281, 1971.
    • (1971) Theory of Probability and Its Applications , vol.16 , Issue.2 , pp. 264-281
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 36
    • 0000864140 scopus 로고
    • The necessary and sufficient conditions for consistency in the empirical risk minimization method
    • V. N. Vapnik and A. Y. Chervonenkis. The necessary and sufficient conditions for consistency in the empirical risk minimization method. Pattern Recognition and Image Analysis, 1(3):283-305, 1991.
    • (1991) Pattern Recognition and Image Analysis , vol.1 , Issue.3 , pp. 283-305
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 37
    • 0001254045 scopus 로고    scopus 로고
    • Multi-class support vector machines
    • M. Verleysen, editor. , Brussels, D Facto
    • J. Weston and C. Watkins. Multi-class support vector machines. In M. Verleysen, editor, Proceedings ESANN, Brussels, 1999. D Facto.
    • (1999) Proceedings ESANN
    • Weston, J.1    Watkins, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.