-
1
-
-
33646900510
-
The tale beyond the tail: Histone core domain modifications and the regulation of chromatin structure
-
Mersfelder EL, Parthun MR. The tale beyond the tail: Histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res 2006; 34:2653-62.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 2653-2662
-
-
Mersfelder, E.L.1
Parthun, M.R.2
-
2
-
-
0141483484
-
Identification of novel histone post-translational modifications by peptide mass fingerprinting
-
Zhang L, Eugeni EE, Parthun MR, Freitas MA. Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 2003; 112:77-86.
-
(2003)
Chromosoma
, vol.112
, pp. 77-86
-
-
Zhang, L.1
Eugeni, E.E.2
Parthun, M.R.3
Freitas, M.A.4
-
3
-
-
27644467857
-
Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae
-
Hyland EM, Cosgrove MS, Molina H, Wang D, Pandey A, Cottee RJ, Boeke JD. Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:10060-70.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 10060-10070
-
-
Hyland, E.M.1
Cosgrove, M.S.2
Molina, H.3
Wang, D.4
Pandey, A.5
Cottee, R.J.6
Boeke, J.D.7
-
4
-
-
22444448143
-
A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response
-
Masumoto H, Hawke D, Kobayashi R, Verreault A. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 2005; 436:294-8.
-
(2005)
Nature
, vol.436
, pp. 294-298
-
-
Masumoto, H.1
Hawke, D.2
Kobayashi, R.3
Verreault, A.4
-
5
-
-
22544441929
-
Characterization of lysine 56 of histone H3 as an acetylation site in Saccharomyces cerevisiae
-
Ozdemir A, Spicuglia S, Lasonder E, Vermeulen M, Campsteijn C, Stunnenberg HG, Logie C. Characterization of lysine 56 of histone H3 as an acetylation site in Saccharomyces cerevisiae. J Biol Chem 2005; 280:25949-52.
-
(2005)
J Biol Chem
, vol.280
, pp. 25949-25952
-
-
Ozdemir, A.1
Spicuglia, S.2
Lasonder, E.3
Vermeulen, M.4
Campsteijn, C.5
Stunnenberg, H.G.6
Logie, C.7
-
6
-
-
33646472914
-
Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis
-
Recht J, Tsubota T, Tanny JC, Diaz RL, Berger JM, Zhang X, Garcia BA, Shabanowitz J, Burlingame AL, Hunt DF, Kaufman PD, Allis CD. Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc Natl Acad Sci USA 2006; 103:6988-93.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 6988-6993
-
-
Recht, J.1
Tsubota, T.2
Tanny, J.C.3
Diaz, R.L.4
Berger, J.M.5
Zhang, X.6
Garcia, B.A.7
Shabanowitz, J.8
Burlingame, A.L.9
Hunt, D.F.10
Kaufman, P.D.11
Allis, C.D.12
-
7
-
-
18844413266
-
Acetylation in histone H3 globular domain regulates gene expression in yeast
-
Xu F, Zhang K, Grunstein M. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 2005; 121:375-85.
-
(2005)
Cell
, vol.121
, pp. 375-385
-
-
Xu, F.1
Zhang, K.2
Grunstein, M.3
-
8
-
-
33644702025
-
Chromatin assembly factor 1 interacts with histone H3 methylated at lysine 79 in the processes of epigenetic silencing and DNA repair
-
Zhou H, Madden BJ, Muddiman DC, Zhang Z. Chromatin assembly factor 1 interacts with histone H3 methylated at lysine 79 in the processes of epigenetic silencing and DNA repair. Biochemistry 2006; 45:2852-61.
-
(2006)
Biochemistry
, vol.45
, pp. 2852-2861
-
-
Zhou, H.1
Madden, B.J.2
Muddiman, D.C.3
Zhang, Z.4
-
9
-
-
0034577919
-
Where does fission yeast sit on the tree of life?
-
Sipiczki M. Where does fission yeast sit on the tree of life? Genome Biol 2000; 1:1011.
-
(2000)
Genome Biol
, vol.1
, pp. 1011
-
-
Sipiczki, M.1
-
10
-
-
0036307707
-
Solvent mediated interactions in the structure of the nucleosome core particle at 1.9Å resolution
-
Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9Å resolution. J Mol Biol 2002; 319:1097-113.
-
(2002)
J Mol Biol
, vol.319
, pp. 1097-1113
-
-
Davey, C.A.1
Sargent, D.F.2
Luger, K.3
Maeder, A.W.4
Richmond, T.J.5
-
12
-
-
14744270719
-
Fast, long-range, reversible conformational fluctuations in nucleosomes revealed by single-pair fluorescence resonance energy transfer
-
Tomschik M, Zheng H, van Holde K, Zlatanova J, Leuba SH. Fast, long-range, reversible conformational fluctuations in nucleosomes revealed by single-pair fluorescence resonance energy transfer. Proc Natl Acad Sci USA 2005; 102:3278-83.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 3278-3283
-
-
Tomschik, M.1
Zheng, H.2
Van Holde, K.3
Zlatanova, J.4
Leuba, S.H.5
-
13
-
-
10644222646
-
The histone chaperone Asf1p mediates global chromatin disassembly in vivo
-
Adkins MW, Tyler JK. The histone chaperone Asf1p mediates global chromatin disassembly in vivo. J Biol Chem 2004; 279:52069-74.
-
(2004)
J Biol Chem
, vol.279
, pp. 52069-52074
-
-
Adkins, M.W.1
Tyler, J.K.2
-
14
-
-
2942581154
-
The absence of the yeast chromatin assembly factor Asf1 increases genomic instability and sister chromatid exchange
-
Prado F, Cortes-Ledesma F, Aguilera A. The absence of the yeast chromatin assembly factor Asf1 increases genomic instability and sister chromatid exchange. EMBO Rep 2004; 5:497-502.
-
(2004)
EMBO Rep
, vol.5
, pp. 497-502
-
-
Prado, F.1
Cortes-Ledesma, F.2
Aguilera, A.3
-
15
-
-
33745496607
-
Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4
-
Maas NL, Miller KM, DeFazio LG, Toczyski DP. Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol Cell 2006; 23:109-19.
-
(2006)
Mol Cell
, vol.23
, pp. 109-119
-
-
Maas, N.L.1
Miller, K.M.2
DeFazio, L.G.3
Toczyski, D.P.4
-
16
-
-
0345791546
-
Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools
-
Koç A, Wheeler LJ, Mathews CK, Merrill GF. Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J Biol Chem 2004; 279:223-30.
-
(2004)
J Biol Chem
, vol.279
, pp. 223-230
-
-
Koç, A.1
Wheeler, L.J.2
Mathews, C.K.3
Merrill, G.F.4
-
17
-
-
0025215248
-
Comparison of thermosensitive alleles of the CDC25 gene involved in the cAMP metabolism of Saccharomyces cerevisiae
-
Petitjean A, Hilger F, Tatchell K. Comparison of thermosensitive alleles of the CDC25 gene involved in the cAMP metabolism of Saccharomyces cerevisiae. Genetics 1990; 124:797-806.
-
(1990)
Genetics
, vol.124
, pp. 797-806
-
-
Petitjean, A.1
Hilger, F.2
Tatchell, K.3
-
18
-
-
0029906773
-
Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast
-
Sia RA, Herald HA, Lew DJ. Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast. Mol Biol Cell 1996; 7:1657-66.
-
(1996)
Mol Biol Cell
, vol.7
, pp. 1657-1666
-
-
Sia, R.A.1
Herald, H.A.2
Lew, D.J.3
-
19
-
-
33745520486
-
The sirtuins Hst3 and Hst4p preserve genome integrity by controlling histone H3 lysine 56 deacetylation
-
Celic I, Masumoto H, Griffith WP, Meluh P, Cotter RJ, Boeke JD, Verreault A. The sirtuins Hst3 and Hst4p preserve genome integrity by controlling histone H3 lysine 56 deacetylation. Curr Biol 2006; 16:1280-9.
-
(2006)
Curr Biol
, vol.16
, pp. 1280-1289
-
-
Celic, I.1
Masumoto, H.2
Griffith, W.P.3
Meluh, P.4
Cotter, R.J.5
Boeke, J.D.6
Verreault, A.7
-
20
-
-
0342868306
-
Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth
-
Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B. Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 2000; 406:90-4.
-
(2000)
Nature
, vol.406
, pp. 90-94
-
-
Zhu, G.1
Spellman, P.T.2
Volpe, T.3
Brown, P.O.4
Botstein, D.5
Davis, T.N.6
Futcher, B.7
-
21
-
-
0022457421
-
Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures
-
Sogo JM, Stahl H, Koller T, Knippers R. Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J Mol Biol 1986; 189:189-204.
-
(1986)
J Mol Biol
, vol.189
, pp. 189-204
-
-
Sogo, J.M.1
Stahl, H.2
Koller, T.3
Knippers, R.4
-
22
-
-
0030954208
-
Gcn5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast Spt10 protein
-
Neuwald AF, Landsman D. Gcn5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast Spt10 protein. Trends Biochem Sci 1997; 22:154-5.
-
(1997)
Trends Biochem Sci
, vol.22
, pp. 154-155
-
-
Neuwald, A.F.1
Landsman, D.2
-
23
-
-
0346993669
-
Spt10-dependent transcriptional activation in Saccharomyces cerevisiae requires both the Spt10 acetyltransferase domain and Spt21
-
Hess D, Liu B, Roan NR, Sternglanz R, Winston F. Spt10-dependent transcriptional activation in Saccharomyces cerevisiae requires both the Spt10 acetyltransferase domain and Spt21. Mol Cell Biol 2004; 24:135-43.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 135-143
-
-
Hess, D.1
Liu, B.2
Roan, N.R.3
Sternglanz, R.4
Winston, F.5
-
24
-
-
26444548039
-
Global regulation by the yeast Spt10 protein is mediated through chromatin structure and the histone upstream activating sequence elements
-
Eriksson PR, Mendiratta G, McLaughlin NB, Wolfsberg TG, Marino-Ramirez L, Pompa TA, Jainerin M, Landsman D, Shen CH, Clark DJ. Global regulation by the yeast Spt10 protein is mediated through chromatin structure and the histone upstream activating sequence elements. Mol Cell Biol 2005; 25:9127-37.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 9127-9137
-
-
Eriksson, P.R.1
Mendiratta, G.2
McLaughlin, N.B.3
Wolfsberg, T.G.4
Marino-Ramirez, L.5
Pompa, T.A.6
Jainerin, M.7
Landsman, D.8
Shen, C.H.9
Clark, D.J.10
-
25
-
-
33646361579
-
The DNA-binding domain of the yeast Spt10p activator includes a zinc finger that is homologous to foamy virus integrase
-
Mendiratta G, Eriksson PR, Shen CH, Clark DJ. The DNA-binding domain of the yeast Spt10p activator includes a zinc finger that is homologous to foamy virus integrase. J Biol Chem 2006; 281:7040-8.
-
(2006)
J Biol Chem
, vol.281
, pp. 7040-7048
-
-
Mendiratta, G.1
Eriksson, P.R.2
Shen, C.H.3
Clark, D.J.4
-
26
-
-
0030271392
-
The major cytoplasmic histone acetyltransferase in yeast: Links to chromatin replication and histone metabolism
-
Parthun MR, Widom J, Gottschling DE. The major cytoplasmic histone acetyltransferase in yeast: Links to chromatin replication and histone metabolism. Cell 1996; 87:85-94.
-
(1996)
Cell
, vol.87
, pp. 85-94
-
-
Parthun, M.R.1
Widom, J.2
Gottschling, D.E.3
-
27
-
-
4544290382
-
Characterization of yeast histone H3-specific type B histone acetyltransferases identifies an Ada2-independent Gcn5p activity
-
Sklenar AR, Parthun MR. Characterization of yeast histone H3-specific type B histone acetyltransferases identifies an Ada2-independent Gcn5p activity. BMC Biochem 2004; 5:11.
-
(2004)
BMC Biochem
, vol.5
, pp. 11
-
-
Sklenar, A.R.1
Parthun, M.R.2
-
28
-
-
0028841317
-
The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability
-
Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, Boeke JD. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev 1995; 9:2888-902.
-
(1995)
Genes Dev
, vol.9
, pp. 2888-2902
-
-
Brachmann, C.B.1
Sherman, J.M.2
Devine, S.E.3
Cameron, E.E.4
Pillus, L.5
Boeke, J.D.6
-
29
-
-
33749603235
-
A network of multi-tasking proteins at the DNA replication fork preserves genome stability
-
Budd ME, Tong AH, Polaczek P, Peng X, Boone C, Campbell JL. A network of multi-tasking proteins at the DNA replication fork preserves genome stability. PLoS Genet 2005; 1: e61.
-
(2005)
PLoS Genet
, vol.1
-
-
Budd, M.E.1
Tong, A.H.2
Polaczek, P.3
Peng, X.4
Boone, C.5
Campbell, J.L.6
-
30
-
-
33644778778
-
A DNA integrity network in the yeast Saccharomyces cerevisiae
-
Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 2006; 124:1069-81.
-
(2006)
Cell
, vol.124
, pp. 1069-1081
-
-
Pan, X.1
Ye, P.2
Yuan, D.S.3
Wang, X.4
Bader, J.S.5
Boeke, J.D.6
-
31
-
-
10744230485
-
Global mapping of the yeast genetic interaction network
-
Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Menard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu AM, Shapiro J, Sheikh B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C. Global mapping of the yeast genetic interaction network. Science 2004; 303:808-13.
-
(2004)
Science
, vol.303
, pp. 808-813
-
-
Tong, A.H.1
Lesage, G.2
Bader, G.D.3
Ding, H.4
Xu, H.5
Xin, X.6
Young, J.7
Berriz, G.F.8
Brost, R.L.9
Chang, M.10
Chen, Y.11
Cheng, X.12
Chua, G.13
Friesen, H.14
Goldberg, D.S.15
Haynes, J.16
Humphries, C.17
He, G.18
Hussein, S.19
Ke, L.20
Krogan, N.21
Li, Z.22
Levinson, J.N.23
Lu, H.24
Menard, P.25
Munyana, C.26
Parsons, A.B.27
Ryan, O.28
Tonikian, R.29
Roberts, T.30
Sdicu, A.M.31
Shapiro, J.32
Sheikh, B.33
Suter, B.34
Wong, S.L.35
Zhang, L.V.36
Zhu, H.37
Burd, C.G.38
Munro, S.39
Sander, C.40
Rine, J.41
Greenblatt, J.42
Peter, M.43
Bretscher, A.44
Bell, G.45
Roth, F.P.46
Brown, G.W.47
Andrews, B.48
Bussey, H.49
Boone, C.50
more..
-
32
-
-
2442463320
-
Role of the nuclease activity of Saccharomyces cerevisiae Mre11 in repair of DNA double-strand breaks in mitotic cells
-
Lewis LK, Storici F, Van Komen S, Calero S, Sung P, Resnick MA. Role of the nuclease activity of Saccharomyces cerevisiae Mre11 in repair of DNA double-strand breaks in mitotic cells. Genetics 2004; 166:1701-13.
-
(2004)
Genetics
, vol.166
, pp. 1701-1713
-
-
Lewis, L.K.1
Storici, F.2
Van Komen, S.3
Calero, S.4
Sung, P.5
Resnick, M.A.6
-
33
-
-
6344254299
-
The Mre11 nuclease is not required for 5′ to 3′ resection at multiple HO-induced double-strand breaks
-
Llorente B, Symington LS. The Mre11 nuclease is not required for 5′ to 3′ resection at multiple HO-induced double-strand breaks. Mol Cell Biol 2004; 24:9682-94.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 9682-9694
-
-
Llorente, B.1
Symington, L.S.2
-
34
-
-
0033518179
-
The RCAF complex mediates chromatin assembly during DNA replication and repair
-
Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 1999; 402:555-60.
-
(1999)
Nature
, vol.402
, pp. 555-560
-
-
Tyler, J.K.1
Adams, C.R.2
Chen, S.R.3
Kobayashi, R.4
Kamakaka, R.T.5
Kadonaga, J.T.6
-
35
-
-
22344434704
-
Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C
-
Franco AA, Lam WM, Burgers PM, Kaufman PD. Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Genes Dev 2005; 19:1365-75.
-
(2005)
Genes Dev
, vol.19
, pp. 1365-1375
-
-
Franco, A.A.1
Lam, W.M.2
Burgers, P.M.3
Kaufman, P.D.4
-
36
-
-
27844525514
-
Replication-independent histone deposition by the HIR complex and Asf1
-
Green EM, Antczak AJ, Bailey AO, Franco AA, Wu KJ, Yates IIIrd JR, Kaufman PD. Replication-independent histone deposition by the HIR complex and Asf1. Curr Biol 2005; 15:2044-9.
-
(2005)
Curr Biol
, vol.15
, pp. 2044-2049
-
-
Green, E.M.1
Antczak, A.J.2
Bailey, A.O.3
Franco, A.A.4
Wu, K.J.5
Yates III, J.R.6
Kaufman, P.D.7
-
37
-
-
22544450837
-
Histones are incorporated in trans during reassembly of the yeast PHO5 promoter
-
Schermer UJ, Korber P, Hörz W. Histones are incorporated in trans during reassembly of the yeast PHO5 promoter. Mol Cell 2005; 19:279-85.
-
(2005)
Mol Cell
, vol.19
, pp. 279-285
-
-
Schermer, U.J.1
Korber, P.2
Hörz, W.3
-
38
-
-
0742304304
-
Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis
-
Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 2004; 116:51-61.
-
(2004)
Cell
, vol.116
, pp. 51-61
-
-
Tagami, H.1
Ray-Gallet, D.2
Almouzni, G.3
Nakatani, Y.4
-
39
-
-
0034809530
-
Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors
-
Tyler JK, Collins KA, Prasad-Sinha J, Amiott E, Bulger M, Harte PJ, Kobayashi R, Kadonaga JT. Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol Cell Biol 2001; 21:6574-84.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 6574-6584
-
-
Tyler, J.K.1
Collins, K.A.2
Prasad-Sinha, J.3
Amiott, E.4
Bulger, M.5
Harte, P.J.6
Kobayashi, R.7
Kadonaga, J.T.8
-
40
-
-
11844268072
-
The histone chaperone anti-silencing function 1 is a global regulator of transcription independent of passage through S phase
-
Zabaronick SR, Tyler JK. The histone chaperone anti-silencing function 1 is a global regulator of transcription independent of passage through S phase. Mol Cell Biol 2005; 25:652-60.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 652-660
-
-
Zabaronick, S.R.1
Tyler, J.K.2
-
41
-
-
33644870210
-
The yeast histone chaperone chromatin assembly factor 1 protects against double-strand DNA-damaging agents
-
Linger J, Tyler JK. The yeast histone chaperone chromatin assembly factor 1 protects against double-strand DNA-damaging agents. Genetics 2005; 171:1513-22.
-
(2005)
Genetics
, vol.171
, pp. 1513-1522
-
-
Linger, J.1
Tyler, J.K.2
-
42
-
-
0035101733
-
Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1
-
Emili A, Schieltz DM, Yates IIIrd JR, Hartwell LH. Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1. Mol Cell 2001; 7:13-20.
-
(2001)
Mol Cell
, vol.7
, pp. 13-20
-
-
Emili, A.1
Schieltz, D.M.2
Yates III, J.R.3
Hartwell, L.H.4
-
43
-
-
0035336971
-
Asf1 links Rad53 to control of chromatin assembly
-
Hu F, Alcasabas AA, Elledge SJ. Asf1 links Rad53 to control of chromatin assembly. Genes Dev 2001; 15:1061-6.
-
(2001)
Genes Dev
, vol.15
, pp. 1061-1066
-
-
Hu, F.1
Alcasabas, A.A.2
Elledge, S.J.3
-
44
-
-
23244444605
-
Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation
-
Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D. Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Curr Biol 2005; 15:1364-75.
-
(2005)
Curr Biol
, vol.15
, pp. 1364-1375
-
-
Sweeney, F.D.1
Yang, F.2
Chi, A.3
Shabanowitz, J.4
Hunt, D.F.5
Durocher, D.6
-
45
-
-
0035577669
-
The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-1 and Asf1 in Saccharomyces cerevisiae
-
Meijsing SH, Ehrenhofer-Murray AE. The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-1 and Asf1 in Saccharomyces cerevisiae. Genes Dev 2001; 15:3169-82.
-
(2001)
Genes Dev
, vol.15
, pp. 3169-3182
-
-
Meijsing, S.H.1
Ehrenhofer-Murray, A.E.2
-
46
-
-
0035576789
-
The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor Asf1
-
Osada S, Sutton A, Muster N, Brown CE, Yates IIIrd JR, Sternglanz R, Workman JL. The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor Asf1. Genes Dev 2001; 15:3155-68.
-
(2001)
Genes Dev
, vol.15
, pp. 3155-3168
-
-
Osada, S.1
Sutton, A.2
Muster, N.3
Brown, C.E.4
Yates III, J.R.5
Sternglanz, R.6
Workman, J.L.7
-
47
-
-
20944440841
-
Structural basis for the interaction of Asf1 with histone H3 and its functional implications
-
Mousson F, Lautrette A, Thuret JY, Agez M, Courbeyrette R, Amigues B, Becker E, Neumann JM, Guerois R, Mann C, Ochsenbein F. Structural basis for the interaction of Asf1 with histone H3 and its functional implications. Proc Natl Acad Sci USA 2005; 102:5975-80.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 5975-5980
-
-
Mousson, F.1
Lautrette, A.2
Thuret, J.Y.3
Agez, M.4
Courbeyrette, R.5
Amigues, B.6
Becker, E.7
Neumann, J.M.8
Guerois, R.9
Mann, C.10
Ochsenbein, F.11
-
48
-
-
0037930802
-
Sas4 and Sas5 are required for the histone acetyltransferase activity of Sas2 in the SAS complex
-
Sutton A, Shia WJ, Band D, Kaufman PD, Osada S, Workman JL, Sternglanz R. Sas4 and Sas5 are required for the histone acetyltransferase activity of Sas2 in the SAS complex. J Biol Chem 2003; 278:16887-92.
-
(2003)
J Biol Chem
, vol.278
, pp. 16887-16892
-
-
Sutton, A.1
Shia, W.J.2
Band, D.3
Kaufman, P.D.4
Osada, S.5
Workman, J.L.6
Sternglanz, R.7
-
49
-
-
0036900120
-
Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair
-
Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 2002; 66:630-70.
-
(2002)
Microbiol Mol Biol Rev
, vol.66
, pp. 630-670
-
-
Symington, L.S.1
-
50
-
-
24744433790
-
Reduction of nucleosome assembly during new DNA synthesis impairs both major pathways of double-strand break repair
-
Lewis LK, Karthikeyan G, Cassiano J, Resnick MA. Reduction of nucleosome assembly during new DNA synthesis impairs both major pathways of double-strand break repair. Nucleic Acids Res 2005; 33:4928-39.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 4928-4939
-
-
Lewis, L.K.1
Karthikeyan, G.2
Cassiano, J.3
Resnick, M.A.4
-
51
-
-
8644256711
-
Activation of the DNA damage checkpoint in yeast lacking the histone chaperone anti-silencing function 1
-
Ramey CJ, Howar S, Adkins M, Linger J, Spicer J, Tyler JK. Activation of the DNA damage checkpoint in yeast lacking the histone chaperone anti-silencing function 1. Mol Cell Biol 2004; 24:10313-27.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 10313-10327
-
-
Ramey, C.J.1
Howar, S.2
Adkins, M.3
Linger, J.4
Spicer, J.5
Tyler, J.K.6
-
52
-
-
0037179692
-
Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair
-
Bird AW, Yu DY, Pray-Grant MG, Qiu Q, Harmon KE, Megee PC, Grant PA, Smith MM, Christman MF. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 2002; 419:411-5.
-
(2002)
Nature
, vol.419
, pp. 411-415
-
-
Bird, A.W.1
Yu, D.Y.2
Pray-Grant, M.G.3
Qiu, Q.4
Harmon, K.E.5
Megee, P.C.6
Grant, P.A.7
Smith, M.M.8
Christman, M.F.9
-
53
-
-
10944267160
-
Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites
-
Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, Kron SJ, Jackson SP, Cote J. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 2004; 16:979-90.
-
(2004)
Mol Cell
, vol.16
, pp. 979-990
-
-
Downs, J.A.1
Allard, S.2
Jobin-Robitaille, O.3
Javaheri, A.4
Auger, A.5
Bouchard, N.6
Kron, S.J.7
Jackson, S.P.8
Cote, J.9
-
54
-
-
30344444484
-
Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks
-
Murr R, Loizou JI, Yang YG, Cuenin C, Li H, Wang ZQ, Herceg Z. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol 2006; 8:91-9.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 91-99
-
-
Murr, R.1
Loizou, J.I.2
Yang, Y.G.3
Cuenin, C.4
Li, H.5
Wang, Z.Q.6
Herceg, Z.7
-
55
-
-
33646269070
-
Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double-strand breaks
-
Qin S, Parthun MR. Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double-strand breaks. Mol Cell Biol 2006; 26:3649-58.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 3649-3658
-
-
Qin, S.1
Parthun, M.R.2
-
56
-
-
20344364883
-
Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair
-
Tamburini BA, Tyler JK. Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 2005; 25:4903-13.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 4903-4913
-
-
Tamburini, B.A.1
Tyler, J.K.2
-
57
-
-
0036888874
-
Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair
-
Qin S, Parthun MR. Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol 2002; 22:8353-65.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 8353-8365
-
-
Qin, S.1
Parthun, M.R.2
-
58
-
-
22744445013
-
Pumps, paradoxes and ploughshares: Mechanism of the MCM2-7 DNA helicase
-
Takahashi TS, Wigley DB, Walter JC. Pumps, paradoxes and ploughshares: Mechanism of the MCM2-7 DNA helicase. Trends Biochem Sci 2005; 30:437-44.
-
(2005)
Trends Biochem Sci
, vol.30
, pp. 437-444
-
-
Takahashi, T.S.1
Wigley, D.B.2
Walter, J.C.3
-
59
-
-
18244371925
-
Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint
-
Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 2005; 19:1040-52.
-
(2005)
Genes Dev
, vol.19
, pp. 1040-1052
-
-
Byun, T.S.1
Pacek, M.2
Yee, M.C.3
Walter, J.C.4
Cimprich, K.A.5
-
60
-
-
33746816108
-
The Rad53 signal transduction pathway: Replication fork stabilization, DNA repair, and adaptation
-
Branzei D, Foiani M. The Rad53 signal transduction pathway: Replication fork stabilization, DNA repair, and adaptation. Exp Cell Res 2006; 312:2654-9.
-
(2006)
Exp Cell Res
, vol.312
, pp. 2654-2659
-
-
Branzei, D.1
Foiani, M.2
-
61
-
-
30744465308
-
MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals
-
Lou Z, Minter-Dykhouse K, Franco S, Gostissa M, Rivera MA, Celeste A, Manis JP, van Deursen J, Nussenzweig A, Paull TT, Alt FW, Chen J. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 2006; 21:187-200.
-
(2006)
Mol Cell
, vol.21
, pp. 187-200
-
-
Lou, Z.1
Minter-Dykhouse, K.2
Franco, S.3
Gostissa, M.4
Rivera, M.A.5
Celeste, A.6
Manis, J.P.7
Van Deursen, J.8
Nussenzweig, A.9
Paull, T.T.10
Alt, F.W.11
Chen, J.12
-
62
-
-
3042793923
-
Histone H2A phosphorylation controls Crb2 recruitment at DNA breaks, maintains checkpoint arrest, and influences DNA repair in fission yeast
-
Nakamura TM, Du LL, Redon C, Russell P. Histone H2A phosphorylation controls Crb2 recruitment at DNA breaks, maintains checkpoint arrest, and influences DNA repair in fission yeast. Mol Cell Biol 2004; 24:6215-30.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 6215-6230
-
-
Nakamura, T.M.1
Du, L.L.2
Redon, C.3
Russell, P.4
-
63
-
-
0032489520
-
DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139
-
Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273:5858-68.
-
(1998)
J Biol Chem
, vol.273
, pp. 5858-5868
-
-
Rogakou, E.P.1
Pilch, D.R.2
Orr, A.H.3
Ivanova, V.S.4
Bonner, W.M.5
-
64
-
-
4644257681
-
Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break
-
Shroff R, Arbel-Eden A, Pilch D, Ira G, Bonner WM, Petrini JH, Haber JE, Lichten M. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol 2004; 14:1703-11.
-
(2004)
Curr Biol
, vol.14
, pp. 1703-1711
-
-
Shroff, R.1
Arbel-Eden, A.2
Pilch, D.3
Ira, G.4
Bonner, W.M.5
Petrini, J.H.6
Haber, J.E.7
Lichten, M.8
-
65
-
-
29244434544
-
MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks
-
Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 2006; 123:1213-1226.
-
(2006)
Cell
, vol.123
, pp. 1213-1226
-
-
Stucki, M.1
Clapperton, J.A.2
Mohammad, D.3
Yaffe, M.B.4
Smerdon, S.J.5
Jackson, S.P.6
-
66
-
-
0034705604
-
Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes
-
Boyer LA, Logie C, Bonte E, Becker PB, Wade PA, Wolffe AP, Wu C, Imbalzano AN, Peterson CL. Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes. J Biol Chem 2000; 275:18864-70.
-
(2000)
J Biol Chem
, vol.275
, pp. 18864-18870
-
-
Boyer, L.A.1
Logie, C.2
Bonte, E.3
Becker, P.B.4
Wade, P.A.5
Wolffe, A.P.6
Wu, C.7
Imbalzano, A.N.8
Peterson, C.L.9
-
67
-
-
0036849432
-
Checking on the fork: The DNA replication stress-response pathway
-
Osborn AJ, Elledge SJ, Zou L. Checking on the fork: The DNA replication stress-response pathway. Trends Cell Biol 2002; 12:509-516.
-
(2002)
Trends Cell Biol
, vol.12
, pp. 509-516
-
-
Osborn, A.J.1
Elledge, S.J.2
Zou, L.3
-
68
-
-
32444434989
-
Histone H4 K16 acetylation controls chromatin structure and protein interactions
-
Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone H4 K16 acetylation controls chromatin structure and protein interactions. Science 2006; 311:844-7.
-
(2006)
Science
, vol.311
, pp. 844-847
-
-
Shogren-Knaak, M.1
Ishii, H.2
Sun, J.M.3
Pazin, M.J.4
Davie, J.R.5
Peterson, C.L.6
-
69
-
-
33748199605
-
Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination
-
De Piccoli G, Cortes-Ledesma F, Ira G, Torres-Rosell J, Uhle S, Farmer S, Hwang JY, Machin F, Ceschia A, McAleenan A, Cordon-Preciado V, Clemente-Blanco A, Vilella-Mitjana F, Ullal P, Jarmuz A, Leitao B, Bressan D, Dotiwala F, Papusha A, Zhao X, Myung K, Haber JE, Aguilera A, Aragon L. Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat Cell Biol 2006; 8:1032-1034.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 1032-1034
-
-
De Piccoli, G.1
Cortes-Ledesma, F.2
Ira, G.3
Torres-Rosell, J.4
Uhle, S.5
Farmer, S.6
Hwang, J.Y.7
Machin, F.8
Ceschia, A.9
McAleenan, A.10
Cordon-Preciado, V.11
Clemente-Blanco, A.12
Vilella-Mitjana, F.13
Ullal, P.14
Jarmuz, A.15
Leitao, B.16
Bressan, D.17
Dotiwala, F.18
Papusha, A.19
Zhao, X.20
Myung, K.21
Haber, J.E.22
Aguilera, A.23
Aragon, L.24
more..
-
70
-
-
33644554143
-
The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex
-
Pebernard S, Wohlschlegel J, McDonald WH, Yates IIIrd JR, Boddy MN. The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex. Mol Cell Biol 2006; 26:1617-30.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 1617-1630
-
-
Pebernard, S.1
Wohlschlegel, J.2
McDonald, W.H.3
Yates III, J.R.4
Boddy, M.N.5
-
71
-
-
10944232673
-
Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair
-
Strom L, Lindroos HB, Shirahige K, Sjogren C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 2004; 16:1003-15.
-
(2004)
Mol Cell
, vol.16
, pp. 1003-1015
-
-
Strom, L.1
Lindroos, H.B.2
Shirahige, K.3
Sjogren, C.4
-
72
-
-
1842474282
-
Two homologous domains of similar structure but different stability in the yeast linker histone, Hho1p
-
Ali T, Coles P, Stevens TJ, Stott K, Thomas JO. Two homologous domains of similar structure but different stability in the yeast linker histone, Hho1p. J Mol Biol 2004; 338:139-48.
-
(2004)
J Mol Biol
, vol.338
, pp. 139-148
-
-
Ali, T.1
Coles, P.2
Stevens, T.J.3
Stott, K.4
Thomas, J.O.5
-
73
-
-
0018581187
-
Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin
-
Thoma F, Koller T, Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 1979; 83:403-27.
-
(1979)
J Cell Biol
, vol.83
, pp. 403-427
-
-
Thoma, F.1
Koller, T.2
Klug, A.3
-
74
-
-
0037490067
-
Suppression of homologous recombination by the Saccharomyces cerevisiae linker histone
-
Downs JA, Kosmidou E, Morgan A, Jackson SP. Suppression of homologous recombination by the Saccharomyces cerevisiae linker histone. Mol Cell 2003; 11:1685-92.
-
(2003)
Mol Cell
, vol.11
, pp. 1685-1692
-
-
Downs, J.A.1
Kosmidou, E.2
Morgan, A.3
Jackson, S.P.4
-
75
-
-
0036786970
-
Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation
-
Anderson JD, Thastrom A, Widom J. Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation. Mol Cell Biol 2002; 22:7147-57.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 7147-7157
-
-
Anderson, J.D.1
Thastrom, A.2
Widom, J.3
-
76
-
-
4344662581
-
A 'one-pot' assay for the accessibility of DNA in a nucleosome core particle
-
Wu C, Travers A. A 'one-pot' assay for the accessibility of DNA in a nucleosome core particle. Nucleic Acids Res 2004; 32:e122.
-
(2004)
Nucleic Acids Res
, vol.32
-
-
Wu, C.1
Travers, A.2
-
77
-
-
33644852073
-
Histone post-translational modifications and the response to DNA double-strand breaks
-
Wurtele H, Verreault A. Histone post-translational modifications and the response to DNA double-strand breaks. Curr Opin Cell Biol 2006; 18:137-44.
-
(2006)
Curr Opin Cell Biol
, vol.18
, pp. 137-144
-
-
Wurtele, H.1
Verreault, A.2
-
78
-
-
0037178722
-
Maintenance of genome stability in Saccharomyces cerevisiae
-
Kolodner RD, Putnam CD, Myung K. Maintenance of genome stability in Saccharomyces cerevisiae. Science 2002; 297:552-7.
-
(2002)
Science
, vol.297
, pp. 552-557
-
-
Kolodner, R.D.1
Putnam, C.D.2
Myung, K.3
-
79
-
-
0036519363
-
DNA and its associated processes as targets for cancer therapy
-
Hurley LH. DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2002; 2:188-200.
-
(2002)
Nat Rev Cancer
, vol.2
, pp. 188-200
-
-
Hurley, L.H.1
-
80
-
-
0038312215
-
Saccharomyces cerevisiae chromatin assembly factors that act during DNA replication function in the maintenance of genome stability
-
Myung K, Pennaneach V, Kats ES, Kolodner RD. Saccharomyces cerevisiae chromatin assembly factors that act during DNA replication function in the maintenance of genome stability. Proc Natl Acad Sci USA 2003; 100:6640-5.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 6640-6645
-
-
Myung, K.1
Pennaneach, V.2
Kats, E.S.3
Kolodner, R.D.4
-
81
-
-
33745872612
-
Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom's syndrome protein
-
Schmidt KH, Wu J, Kolodner RD. Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom's syndrome protein. Mol Cell Biol 2006; 26:5406-20.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 5406-5420
-
-
Schmidt, K.H.1
Wu, J.2
Kolodner, R.D.3
-
82
-
-
0033582544
-
Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin
-
Shibahara K, Stillman B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 1999; 96:575-85.
-
(1999)
Cell
, vol.96
, pp. 575-585
-
-
Shibahara, K.1
Stillman, B.2
-
83
-
-
26444573127
-
Towards the human cancer epigenome
-
Fraga MF, Esteller M. Towards the human cancer epigenome. Cell Cycle 2005; 4:1377-81
-
(2005)
Cell Cycle
, vol.4
, pp. 1377-1381
-
-
Fraga, M.F.1
Esteller, M.2
-
84
-
-
85078505418
-
Improved flow cytometric analysis of the budding yeast cell cycle
-
Haase SB, Reed SI. Improved flow cytometric analysis of the budding yeast cell cycle. Cell Cycle 2002; 1:132-6.
-
(2002)
Cell Cycle
, vol.1
, pp. 132-136
-
-
Haase, S.B.1
Reed, S.I.2
-
85
-
-
33750477650
-
Structural basis for the histone chaperone activity of Asf1
-
English CM, Adkins CW, Carson JJ, Chruchill MEA, Tyler JK. Structural basis for the histone chaperone activity of Asf1. Cell 2006; 127:495-508.
-
(2006)
Cell
, vol.127
, pp. 495-508
-
-
English, C.M.1
Adkins, C.W.2
Carson, J.J.3
Chruchill, M.E.A.4
Tyler, J.K.5
|