메뉴 건너뛰기




Volumn 361, Issue 1472, 2006, Pages 1317-1321

Protein motions during catalysis by dihydrofolate reductases

Author keywords

Catalysis; Enzymes; Hydrogen transfer; Kinetic isotope effects; Protein dynamics

Indexed keywords

BACTERIUM; CATALYSIS; DEUTERIUM; ENZYME ACTIVITY; FECAL COLIFORM; HYDROGEN; ISOTOPIC RATIO; PROTEIN;

EID: 33748375604     PISSN: 09628436     EISSN: None     Source Type: Journal    
DOI: 10.1098/rstb.2006.1865     Document Type: Conference Paper
Times cited : (23)

References (33)
  • 1
    • 0037188007 scopus 로고    scopus 로고
    • Nuclear quantum effects and enzyme dynamics in dihydrofolate reductase catalysis
    • doi:10.1021/jp020190v
    • Agarwal, P. K., Billeter, S. R. & Hammes-Schiffer, S. 2002a Nuclear quantum effects and enzyme dynamics in dihydrofolate reductase catalysis. J. Phys. Chem. B 106, 3283-3293. (doi:10.1021/jp020190v)
    • (2002) J. Phys. Chem. B , vol.106 , pp. 3283-3293
    • Agarwal, P.K.1    Billeter, S.R.2    Hammes-Schiffer, S.3
  • 3
    • 0041821836 scopus 로고    scopus 로고
    • A perspective on enzyme catalysis
    • doi:10.1126/science.1085515
    • Benkovic, S. J. & Hammes-Schiffer, S. 2003 A perspective on enzyme catalysis. Science 301, 1196-1202. (doi:10.1126/science.1085515)
    • (2003) Science , vol.301 , pp. 1196-1202
    • Benkovic, S.J.1    Hammes-Schiffer, S.2
  • 4
    • 33751123245 scopus 로고    scopus 로고
    • Curve crossing formulation for proton transfer reactions in solution
    • doi:10.1021/jp9522324
    • Borgis, D. & Hynes, J. T. 1996 Curve crossing formulation for proton transfer reactions in solution. J. Phys. Chem. 100, 1118-1128. (doi:10.1021/jp9522324)
    • (1996) J. Phys. Chem. , vol.100 , pp. 1118-1128
    • Borgis, D.1    Hynes, J.T.2
  • 5
    • 0026707687 scopus 로고
    • Vibrationally enhanced tunneling as a mechanism for enzymatic hydrogen transfer
    • Bruno, W. J. & Bialek, W. 1992 Vibrationally enhanced tunneling as a mechanism for enzymatic hydrogen transfer. Biophys. J. 63, 689-699.
    • (1992) Biophys. J. , vol.63 , pp. 689-699
    • Bruno, W.J.1    Bialek, W.2
  • 6
    • 0031443372 scopus 로고    scopus 로고
    • Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant
    • doi:10.1021/bi9716231
    • Cameron, C. E. & Benkovic, S. J. 1997 Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant. Biochemistry 36, 15 792-15 800. (doi:10.1021/bi9716231)
    • (1997) Biochemistry , vol.36 , pp. 15792-15800
    • Cameron, C.E.1    Benkovic, S.J.2
  • 7
    • 0033594816 scopus 로고    scopus 로고
    • Direct measurement of the pK(a) of aspartic acid 26 in Lactobacillus casei dihydrofolate reductase: Implications for the catalytic mechanism
    • doi:10.1021/bi990301p
    • Casarotto, M. G., Basran, J., Badii, R., Sze, K. H. & Roberts, G. C. K. 1999 Direct measurement of the pK(a) of aspartic acid 26 in Lactobacillus casei dihydrofolate reductase: implications for the catalytic mechanism. Biochemistry 38, 8038-8044. (doi:10.1021/bi990301p)
    • (1999) Biochemistry , vol.38 , pp. 8038-8044
    • Casarotto, M.G.1    Basran, J.2    Badii, R.3    Sze, K.H.4    Roberts, G.C.K.5
  • 8
    • 0034737320 scopus 로고    scopus 로고
    • The crystal structure of dihydrofolate reductase from Thermotoga maritima: Molecular features of thermostability
    • doi:10.1006/jmbi.2000.3570
    • Dams, T., Auerbach, G., Bader, G., Jacob, U., Ploom, T., Huber, R. & Jaenicke, R. 2000 The crystal structure of dihydrofolate reductase from Thermotoga maritima: molecular features of thermostability. J. Mol. Biol. 297, 659-672. (doi:10.1006/jmbi.2000.3570)
    • (2000) J. Mol. Biol. , vol.297 , pp. 659-672
    • Dams, T.1    Auerbach, G.2    Bader, G.3    Jacob, U.4    Ploom, T.5    Huber, R.6    Jaenicke, R.7
  • 9
    • 0029102089 scopus 로고
    • Dynamics of the dihydrofolate-reductase folate complex: Catalytic sites and regions known to undergo conformational change exhibit diverse dynamical features
    • doi:10.1021/bi00035a009
    • Epstein, D. M., Benkovic, S. J. & Wright, P. E. 1995 Dynamics of the dihydrofolate-reductase folate complex: catalytic sites and regions known to undergo conformational change exhibit diverse dynamical features. Biochemistry 34, 11 037-11 048. (doi:10.1021/bi00035a009)
    • (1995) Biochemistry , vol.34 , pp. 11037-11048
    • Epstein, D.M.1    Benkovic, S.J.2    Wright, P.E.3
  • 10
    • 0034677111 scopus 로고    scopus 로고
    • NMR studies of ligand binding to dihydrofolate reductase
    • doi:10.1002/(SICI)1521-3773(20000117)39:2<290::AID-ANIE290>3.0. CO;2-1
    • Feeney, J. 2000 NMR studies of ligand binding to dihydrofolate reductase. Angew. Chem. Int. Ed. 39, 290-312. (doi:10.1002/(SICI)1521-3773(20000117)39: 2<290::AID-ANIE290>3.0.CO;2-1)
    • (2000) Angew. Chem. Int. Ed. , vol.39 , pp. 290-312
    • Feeney, J.1
  • 11
    • 0037459224 scopus 로고    scopus 로고
    • Importance of substrate and cofactor polarization in the active site of dihydrofolate reductase
    • doi:10.1016/S0022-2836(03)00123-2
    • Garcia-Viloca, M., Truhlar, D. G. & Gao, J. 2003a Importance of substrate and cofactor polarization in the active site of dihydrofolate reductase. J. Mol. Biol. 327, 549-560. (doi:10.1016/S0022-2836(03)00123-2)
    • (2003) J. Mol. Biol. , vol.327 , pp. 549-560
    • Garcia-Viloca, M.1    Truhlar, D.G.2    Gao, J.3
  • 12
    • 0344391945 scopus 로고    scopus 로고
    • Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase
    • doi:10.1021/bi034824f
    • Garcia-Viloca, M., Truhlar, D. G. & Gao, J. 2003b Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase. Biochemistry 42, 13 558-13 575. (doi:10.1021/bi034824f)
    • (2003) Biochemistry , vol.42 , pp. 13558-13575
    • Garcia-Viloca, M.1    Truhlar, D.G.2    Gao, J.3
  • 13
    • 0037518552 scopus 로고    scopus 로고
    • Dynamic barriers and tunneling. New views of hydrogen transfer in enzyme reactions
    • Klinman, J. P. 2003 Dynamic barriers and tunneling. New views of hydrogen transfer in enzyme reactions. Pure Appl. Chem. 75, 601-608.
    • (2003) Pure Appl. Chem. , vol.75 , pp. 601-608
    • Klinman, J.P.1
  • 14
    • 0036301901 scopus 로고    scopus 로고
    • Environmentally coupled hydrogen tunneling - Linking catalysis to dynamics
    • doi:10.1046/j.1432-1033.2002.03022.x
    • Knapp, M. J. & Klinman, J. P. 2002 Environmentally coupled hydrogen tunneling - linking catalysis to dynamics. Eur. J. Biochem. 269, 3113-3121. (doi:10.1046/j.1432-1033.2002.03022.x)
    • (2002) Eur. J. Biochem. , vol.269 , pp. 3113-3121
    • Knapp, M.J.1    Klinman, J.P.2
  • 15
    • 0033305793 scopus 로고    scopus 로고
    • Proton and hydrogen atom tunnelling in hydrolytic and redox enzyme catalysis
    • doi:10.1139/cjc-77-5-6-1085
    • Kuznetsov, A. M. & Ulstrup, J. 1999 Proton and hydrogen atom tunnelling in hydrolytic and redox enzyme catalysis. Can. J. Chem. 77, 1085-1096. (doi:10.1139/cjc-77-5-6-1085)
    • (1999) Can. J. Chem. , vol.77 , pp. 1085-1096
    • Kuznetsov, A.M.1    Ulstrup, J.2
  • 17
    • 0242267579 scopus 로고    scopus 로고
    • Evidence for environmentally coupled hydrogen tunneling during dihydrofolate reductase catalysis
    • doi:10.1021/ja035692g
    • Maglia, G. & Allemann, R. K. 2003 Evidence for environmentally coupled hydrogen tunneling during dihydrofolate reductase catalysis. J. Am. Chem. Soc. 125, 13 372-13 373. (doi:10.1021/ja035692g)
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 13372-13373
    • Maglia, G.1    Allemann, R.K.2
  • 18
    • 0041761262 scopus 로고    scopus 로고
    • Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima
    • doi:10.1042/BJ20030412
    • Maglia, G., Javed, M. H. & Allemann, R. K. 2003 Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima. Biochem. J. 374, 529-535. (doi:10.1042/BJ20030412)
    • (2003) Biochem. J. , vol.374 , pp. 529-535
    • Maglia, G.1    Javed, M.H.2    Allemann, R.K.3
  • 19
    • 17044401342 scopus 로고    scopus 로고
    • Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis
    • doi:10.1073/pnas.0500699102
    • McElheny, D., Schnell, J. R., Lansing, J. C., Dyson, H. J. & Wright, P. E. 2005 Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis. Proc. Natl Acad. Sci. USA 102, 5032-5037. (doi:10.1073/pnas.0500699102)
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 5032-5037
    • McElheny, D.1    Schnell, J.R.2    Lansing, J.C.3    Dyson, H.J.4    Wright, P.E.5
  • 20
    • 0035928796 scopus 로고    scopus 로고
    • Backbone dynamics in dihydrofolate reductase complexes: Role of loop flexibility in the catalytic mechanism
    • doi:10.1021/bi010621k
    • Osborne, M. J., Schnell, J., Benkovic, S. J., Dyson, H. J. & Wright, P. E. 2001 Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism. Biochemistry 40, 9846-9859. (doi:10.1021/bi010621k)
    • (2001) Biochemistry , vol.40 , pp. 9846-9859
    • Osborne, M.J.1    Schnell, J.2    Benkovic, S.J.3    Dyson, H.J.4    Wright, P.E.5
  • 21
    • 33745362450 scopus 로고    scopus 로고
    • Hydride transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions
    • doi:10.1021/ja0615851
    • Pang, J., Pu, J., Gao, J., Truhlar, D. G. & Allemann, R. K. 2006 Hydride transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions. J. Am. Chem. Soc. 128, 8015-8023. (doi:10.1021/ja0615851)
    • (2006) J. Am. Chem. Soc. , vol.128 , pp. 8015-8023
    • Pang, J.1    Pu, J.2    Gao, J.3    Truhlar, D.G.4    Allemann, R.K.5
  • 22
    • 19944416878 scopus 로고    scopus 로고
    • Small temperature dependence of the kinetic isotope effect for the hydride transfer reaction catalyzed by Escherichia coli dihydrofolate reductase
    • doi:10.1021/jp051184c
    • Pu, J. Z., Ma, S. H., Gao, J. L. & Truhlar, D. G. 2005 Small temperature dependence of the kinetic isotope effect for the hydride transfer reaction catalyzed by Escherichia coli dihydrofolate reductase. J. Phys. Chem. B 109, 8551-8556. (doi:10.1021/jp051184c)
    • (2005) J. Phys. Chem. B , vol.109 , pp. 8551-8556
    • Pu, J.Z.1    Ma, S.H.2    Gao, J.L.3    Truhlar, D.G.4
  • 23
    • 0033955055 scopus 로고    scopus 로고
    • Protein dynamics in enzymatic catalysis: Exploration of dihydrofolate reductase
    • doi:10.1021/ja9913838
    • Radkiewicz, J. L. & Brooks, C. L. 2000 Protein dynamics in enzymatic catalysis: exploration of dihydrofolate reductase. J. Am. Chem. Soc. 122, 225-231. (doi:10.1021/ja9913838)
    • (2000) J. Am. Chem. Soc. , vol.122 , pp. 225-231
    • Radkiewicz, J.L.1    Brooks, C.L.2
  • 24
    • 0031015737 scopus 로고    scopus 로고
    • Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: Crystallographic evidence
    • doi:10.1021/bi962337c
    • Sawaya, M. R. & Kraut, J. 1997 Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36, 586-603. (doi:10.1021/bi962337c)
    • (1997) Biochemistry , vol.36 , pp. 586-603
    • Sawaya, M.R.1    Kraut, J.2
  • 25
    • 0036112608 scopus 로고    scopus 로고
    • Role of water in the catalytic cycle of E. coli dihydrofolate reductase
    • doi:10.1110/ps.5060102
    • Shrimpton, P. & Allemann, R. K. 2002 Role of water in the catalytic cycle of E. coli dihydrofolate reductase. Protein Sci. 11, 1442-1451. (doi:10.1110/ps.5060102)
    • (2002) Protein Sci. , vol.11 , pp. 1442-1451
    • Shrimpton, P.1    Allemann, R.K.2
  • 26
    • 0037402111 scopus 로고    scopus 로고
    • Functional role for Tyr 31 in the catalytic cycle of chicken dihydrofolate reductase
    • doi:10.1002/prot.10370
    • Shrimpton, P., Mullaney, A. & Allemann, R. K. 2003 Functional role for Tyr 31 in the catalytic cycle of chicken dihydrofolate reductase. Proteins Struct. Funct. Genet. 51, 216-223. (doi:10.1002/prot.10370)
    • (2003) Proteins Struct. Funct. Genet. , vol.51 , pp. 216-223
    • Shrimpton, P.1    Mullaney, A.2    Allemann, R.K.3
  • 27
    • 1842830209 scopus 로고    scopus 로고
    • Tunneling and coupled motion in the Escherichia coli dihydrofolate reductase catalysis
    • doi:10.1021/ja031683w
    • Sikorski, R. S., Wang, L., Markham, K. A., Rajagopalan, P. T. R., Benkovic, S. J. & Kohen, A. 2004 Tunneling and coupled motion in the Escherichia coli dihydrofolate reductase catalysis. J. Am. Chem. Soc. 126, 4778-4779. (doi:10.1021/ja031683w)
    • (2004) J. Am. Chem. Soc. , vol.126 , pp. 4778-4779
    • Sikorski, R.S.1    Wang, L.2    Markham, K.A.3    Rajagopalan, P.T.R.4    Benkovic, S.J.5    Kohen, A.6
  • 28
    • 1842531419 scopus 로고    scopus 로고
    • Pivotal role of Gly 121 in dihydrofolate reductase from Escherichia coli: The altered structure of a mutant enzyme may form the basis of its diminished catalytic performance
    • doi:10.1021/bi036164k
    • Swanwick, R. S., Shrimpton, P. J. & Allemann, R. K. 2004 Pivotal role of Gly 121 in dihydrofolate reductase from Escherichia coli: the altered structure of a mutant enzyme may form the basis of its diminished catalytic performance. Biochemistry 43, 4119-4127. (doi:10.1021/bi036164k)
    • (2004) Biochemistry , vol.43 , pp. 4119-4127
    • Swanwick, R.S.1    Shrimpton, P.J.2    Allemann, R.K.3
  • 29
    • 32944457660 scopus 로고    scopus 로고
    • Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase
    • doi:10.1042/BJ20051464
    • Swanwick, R. S., Maglia, G., Tey, L.-h. & Allemann, R. K. 2006 Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase. Biochem. J. 394, 259-265. (doi:10.1042/BJ20051464)
    • (2006) Biochem. J. , vol.394 , pp. 259-265
    • Swanwick, R.S.1    Maglia, G.2    Tey, L.-H.3    Allemann, R.K.4
  • 30
    • 0346936519 scopus 로고    scopus 로고
    • Barriers to hydride transfer in wild type and mutant dihydrofolate reductase from E. coli
    • doi:10.1021/jp035734n
    • Thorpe, I. F. & Brooks, C. L. 2003 Barriers to hydride transfer in wild type and mutant dihydrofolate reductase from E. coli. J. Phys. Chem. B 107, 14 042-14 051. (doi:10.1021/jp035734n)
    • (2003) J. Phys. Chem. B , vol.107 , pp. 14042-14051
    • Thorpe, I.F.1    Brooks, C.L.2
  • 31
    • 6344294816 scopus 로고    scopus 로고
    • The coupling of structural fluctuations to hydride transfer in dihydrofolate reductase
    • doi:10.1002/prot.20219
    • Thorpe, I. F. & Brooks, C. L. 2004 The coupling of structural fluctuations to hydride transfer in dihydrofolate reductase. Proteins Struct. Funct. Bioinform. 57, 444-457. (doi:10.1002/prot.20219)
    • (2004) Proteins Struct. Funct. Bioinform. , vol.57 , pp. 444-457
    • Thorpe, I.F.1    Brooks, C.L.2
  • 32
    • 11144328151 scopus 로고    scopus 로고
    • Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle
    • doi:10.1021/bi048119y
    • Venkitakrishnan, R. P., Zaborowski, E., McElheny, D., Benkovic, S. J., Dyson, H. J. & Wright, P. E. 2004 Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle. Biochemistry 43, 16 046-16 055. (doi:10.1021/bi048119y)
    • (2004) Biochemistry , vol.43 , pp. 16046-16055
    • Venkitakrishnan, R.P.1    Zaborowski, E.2    McElheny, D.3    Benkovic, S.J.4    Dyson, H.J.5    Wright, P.E.6
  • 33
    • 0037414270 scopus 로고    scopus 로고
    • Effect of mutation on enzyme motion in dihydrofolate reductase
    • doi:10.1021/ja028487u
    • Watney, J. B., Agarwal, P. K. & Hammes-Schiffer, S. 2003 Effect of mutation on enzyme motion in dihydrofolate reductase. J. Am. Chem. Soc. 125, 3745-3750. (doi:10.1021/ja028487u)
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 3745-3750
    • Watney, J.B.1    Agarwal, P.K.2    Hammes-Schiffer, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.