메뉴 건너뛰기




Volumn 24, Issue 4, 2000, Pages 469-486

Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast

Author keywords

Heat shock; Stress; Transcription; Yeast

Indexed keywords

GLYCEROL; HEAT SHOCK PROTEIN; HEAT SHOCK PROTEIN 104; HEAT SHOCK PROTEIN 70; TRANSCRIPTION FACTOR; TREHALOSE;

EID: 0033813390     PISSN: 01686445     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0168-6445(00)00035-8     Document Type: Review
Times cited : (500)

References (155)
  • 1
    • 0029395010 scopus 로고
    • Stress signaling in yeast
    • Ruis H., Schüller C. Stress signaling in yeast. BioEssays. 17:1995;959-966.
    • (1995) BioEssays , vol.17 , pp. 959-966
    • Ruis, H.1    Schüller, C.2
  • 2
    • 0022462428 scopus 로고
    • An ancient developmental induction: Heat-shock proteins induced in sporulation and oogenesis
    • Kurtz S., Rossi J., Petko L., Lindquist S. An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science. 231:1986;1154-1157.
    • (1986) Science , vol.231 , pp. 1154-1157
    • Kurtz, S.1    Rossi, J.2    Petko, L.3    Lindquist, S.4
  • 3
    • 0024670024 scopus 로고
    • Yeast Hsp70 RNA levels vary in response to the physiological status of the cell
    • Werner-Washburne M., Becker J., Kosic-Smithers J., Craig E.A. Yeast Hsp70 RNA levels vary in response to the physiological status of the cell. J. Bacteriol. 171:1989;2680-2688.
    • (1989) J. Bacteriol. , vol.171 , pp. 2680-2688
    • Werner-Washburne, M.1    Becker, J.2    Kosic-Smithers, J.3    Craig, E.A.4
  • 4
    • 0025862421 scopus 로고
    • Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae
    • Wieser R., Adam G., Wagner A., Schüller C., Marchler G., Ruis H., Krawiec Z., Bilinski T. Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. J. Biol. Chem. 266:1991;12406-12411.
    • (1991) J. Biol. Chem. , vol.266 , pp. 12406-12411
    • Wieser, R.1    Adam, G.2    Wagner, A.3    Schüller, C.4    Marchler, G.5    Ruis, H.6    Krawiec, Z.7    Bilinski, T.8
  • 5
    • 0028675642 scopus 로고
    • Signal transduction in yeast
    • Thevelein J.M. Signal transduction in yeast. Yeast. 10:1994;1753-1790.
    • (1994) Yeast , vol.10 , pp. 1753-1790
    • Thevelein, J.M.1
  • 6
    • 0032835137 scopus 로고    scopus 로고
    • Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae
    • Thevelein J.M., de Winde J.H. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 33:1999;904-918.
    • (1999) Mol. Microbiol. , vol.33 , pp. 904-918
    • Thevelein, J.M.1    De Winde, J.H.2
  • 7
    • 0028180628 scopus 로고
    • The yeast and mammalian Ras pathways control transcription of heat shock genes independently of heat shock transcription factor
    • Engelberg D., Zandi E., Parker C.S., Karin M. The yeast and mammalian Ras pathways control transcription of heat shock genes independently of heat shock transcription factor. Mol. Cell. Biol. 14:1994;4929-4937.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 4929-4937
    • Engelberg, D.1    Zandi, E.2    Parker, C.S.3    Karin, M.4
  • 8
    • 0031734864 scopus 로고    scopus 로고
    • Ssa1p chaperone interacts with the guanine nucleotide exchange factor of Ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae
    • Geymonat M., Wang L., Garreau H., Jacquet M. Ssa1p chaperone interacts with the guanine nucleotide exchange factor of Ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae. Mol. Microbiol. 30:1998;855-864.
    • (1998) Mol. Microbiol. , vol.30 , pp. 855-864
    • Geymonat, M.1    Wang, L.2    Garreau, H.3    Jacquet, M.4
  • 9
    • 0025879946 scopus 로고
    • Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: The relationship to nutrient-induced cell cycle control
    • Thevelein J.M. Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol. Microbiol. 5:1991;1301-1307.
    • (1991) Mol. Microbiol. , vol.5 , pp. 1301-1307
    • Thevelein, J.M.1
  • 10
    • 0033028597 scopus 로고    scopus 로고
    • Stress factors acting at the level of the plasma membrane induce transcription via the stress response element (STRE) of the yeast Saccharomyces cerevisiae
    • Moskvina E., Imre E.M., Ruis H. Stress factors acting at the level of the plasma membrane induce transcription via the stress response element (STRE) of the yeast Saccharomyces cerevisiae. Mol. Microbiol. 32:1999;1263-1272.
    • (1999) Mol. Microbiol. , vol.32 , pp. 1263-1272
    • Moskvina, E.1    Imre, E.M.2    Ruis, H.3
  • 11
    • 0027441585 scopus 로고
    • Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae
    • Kobayashi N., McEntee K. Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:1993;248-256.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 248-256
    • Kobayashi, N.1    McEntee, K.2
  • 12
    • 0025151966 scopus 로고
    • Evidence for a heat shock transcription factor-independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae
    • Kobayashi N., McEntee K. Evidence for a heat shock transcription factor-independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 87:1990;6550-6554.
    • (1990) Proc. Natl. Acad. Sci. USA , vol.87 , pp. 6550-6554
    • Kobayashi, N.1    McEntee, K.2
  • 13
    • 0032500690 scopus 로고    scopus 로고
    • Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in Saccharomyces cerevisiae
    • Treger J.M., Schmitt A.P., Simon J.R., McEntee K. Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in Saccharomyces cerevisiae. J. Biol. Chem. 273:1998;26875-26879.
    • (1998) J. Biol. Chem. , vol.273 , pp. 26875-26879
    • Treger, J.M.1    Schmitt, A.P.2    Simon, J.R.3    McEntee, K.4
  • 14
    • 0031825456 scopus 로고    scopus 로고
    • A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements
    • Moskvina E., Schüller C., Maurer C.T., Mager W.H., Ruis H. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast. 14:1998;1041-1050.
    • (1998) Yeast , vol.14 , pp. 1041-1050
    • Moskvina, E.1    Schüller, C.2    Maurer, C.T.3    Mager, W.H.4    Ruis, H.5
  • 15
    • 0030770513 scopus 로고    scopus 로고
    • Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene
    • Alepuz P.M., Cunningham K.W., Estruch F. Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Mol. Microbiol. 26:1997;91-98.
    • (1997) Mol. Microbiol. , vol.26 , pp. 91-98
    • Alepuz, P.M.1    Cunningham, K.W.2    Estruch, F.3
  • 16
    • 0027156915 scopus 로고
    • A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions
    • Marchler G., Schüller C., Adam G., Ruis H. A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J. 12:1993;1997-2003.
    • (1993) EMBO J. , vol.12 , pp. 1997-2003
    • Marchler, G.1    Schüller, C.2    Adam, G.3    Ruis, H.4
  • 17
    • 0032481247 scopus 로고    scopus 로고
    • Functional analysis of the stress response element and its role in the multistress response of Saccharomyces cerevisiae
    • Treger J.M., Magee T.R., McEntee K. Functional analysis of the stress response element and its role in the multistress response of Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 243:1998;13-19.
    • (1998) Biochem. Biophys. Res. Commun. , vol.243 , pp. 13-19
    • Treger, J.M.1    Magee, T.R.2    McEntee, K.3
  • 18
    • 0025307385 scopus 로고
    • Regulation of a yeast HSP70 gene by a cAMP responsive transcriptional control element
    • Boorstein W.R., Craig E.A. Regulation of a yeast HSP70 gene by a cAMP responsive transcriptional control element. EMBO J. 9:1990;2543-2553.
    • (1990) EMBO J. , vol.9 , pp. 2543-2553
    • Boorstein, W.R.1    Craig, E.A.2
  • 19
    • 0029845539 scopus 로고    scopus 로고
    • Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: Novel variations of STRE-mediated transcription control?
    • Winderickx J., de Winde J.H., Crauwels M., Hino A., Hohmann S., Van Dijck P., Thevelein J.M. Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control? Mol. Gen. Genet. 252:1996;470-482.
    • (1996) Mol. Gen. Genet. , vol.252 , pp. 470-482
    • Winderickx, J.1    De Winde, J.H.2    Crauwels, M.3    Hino, A.4    Hohmann, S.5    Van Dijck, P.6    Thevelein, J.M.7
  • 20
    • 0029879360 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE)
    • Martínez-Pastor M.T., Marchler G., Schüller C., Marchler-Bauer A., Ruis H., Estruch F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15:1996;2227-2235.
    • (1996) EMBO J. , vol.15 , pp. 2227-2235
    • Martínez-Pastor, M.T.1    Marchler, G.2    Schüller, C.3    Marchler-Bauer, A.4    Ruis, H.5    Estruch, F.6
  • 21
    • 0032579403 scopus 로고    scopus 로고
    • Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high osmolarity glycerol mitogen-activated protein kinase pathway in osmotic stress response
    • Inoue Y., Tsujimoto Y., Kimura A. Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high osmolarity glycerol mitogen-activated protein kinase pathway in osmotic stress response. J. Biol. Chem. 273:1998;2977-2983.
    • (1998) J. Biol. Chem. , vol.273 , pp. 2977-2983
    • Inoue, Y.1    Tsujimoto, Y.2    Kimura, A.3
  • 22
    • 0032814143 scopus 로고    scopus 로고
    • Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p
    • Rep M., Reiser V., Gartner U., Thevelein J.M., Hohmann S., Ammerer G., Ruis H. Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol. Cell. Biol. 19:1999;5474-5485.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 5474-5485
    • Rep, M.1    Reiser, V.2    Gartner, U.3    Thevelein, J.M.4    Hohmann, S.5    Ammerer, G.6    Ruis, H.7
  • 23
    • 0030003064 scopus 로고    scopus 로고
    • Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae
    • Schmitt A.P., McEntee K. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 93:1996;5777-5782.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 5777-5782
    • Schmitt, A.P.1    McEntee, K.2
  • 24
    • 0027253092 scopus 로고
    • Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae
    • Estruch F., Carlson M. Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol. Cell. Biol. 13:1993;3872-3881.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 3872-3881
    • Estruch, F.1    Carlson, M.2
  • 26
    • 0032784969 scopus 로고    scopus 로고
    • A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes
    • Navarro-Avino J.P., Prasad R., Miralles V.J., Benito R.M., Serrano R. A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes. Yeast. 15:1999;829-842.
    • (1999) Yeast , vol.15 , pp. 829-842
    • Navarro-Avino, J.P.1    Prasad, R.2    Miralles, V.J.3    Benito, R.M.4    Serrano, R.5
  • 27
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DeRisi J.L., Iyer V.R., Brown P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 278:1997;680-686.
    • (1997) Science , vol.278 , pp. 680-686
    • Derisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 28
    • 0033540030 scopus 로고    scopus 로고
    • The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors
    • Beck T., Hall M.N. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature. 402:1999;689-692.
    • (1999) Nature , vol.402 , pp. 689-692
    • Beck, T.1    Hall, M.N.2
  • 29
    • 0031587849 scopus 로고    scopus 로고
    • 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae
    • Roberts R.L., Mosch H.U., Fink G.R. 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae. Cell. 89:1997;1055-1065.
    • (1997) Cell , vol.89 , pp. 1055-1065
    • Roberts, R.L.1    Mosch, H.U.2    Fink, G.R.3
  • 31
    • 0032710810 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae RanGTP-binding protein Msn5p is involved in different signal transduction pathways
    • Alepuz P.M., Matheos D., Cunningham K.W., Estruch F. The Saccharomyces cerevisiae RanGTP-binding protein Msn5p is involved in different signal transduction pathways. Genetics. 153:1999;1219-1231.
    • (1999) Genetics , vol.153 , pp. 1219-1231
    • Alepuz, P.M.1    Matheos, D.2    Cunningham, K.W.3    Estruch, F.4
  • 32
    • 0033532281 scopus 로고    scopus 로고
    • Roles of phosphorylation sites in regulating activity of the transcription factor Pho4
    • Komeili A., O'Shea E.K. Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science. 284:1999;977-980.
    • (1999) Science , vol.284 , pp. 977-980
    • Komeili, A.1    O'Shea, E.K.2
  • 33
    • 0033028597 scopus 로고    scopus 로고
    • Stress factors acting at the level of the plasma membrane induce transcription via the stress response element (STRE) of the yeast Saccharomyces cerevisiae
    • Moskvina E., Imre E.M., Ruis H. Stress factors acting at the level of the plasma membrane induce transcription via the stress response element (STRE) of the yeast Saccharomyces cerevisiae. Mol. Microbiol. 32:1999;1263-1272.
    • (1999) Mol. Microbiol. , vol.32 , pp. 1263-1272
    • Moskvina, E.1    Imre, E.M.2    Ruis, H.3
  • 34
    • 0031910875 scopus 로고    scopus 로고
    • Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae
    • Boy-Marcotte E., Perrot M., Bussereau F., Boucherie H., Jacquet M. Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J. Bacteriol. 180:1998;1044-1052.
    • (1998) J. Bacteriol. , vol.180 , pp. 1044-1052
    • Boy-Marcotte, E.1    Perrot, M.2    Bussereau, F.3    Boucherie, H.4    Jacquet, M.5
  • 35
    • 0033037610 scopus 로고    scopus 로고
    • The heat shock response in yeast: Differential regulation and contributions of the Msn2p/Msn4p and Hsf1p regulons
    • Boy-Marcotte E., Lagniel G., Perrot M., Busereau F., Boudsocq A., Jacquet M., Labarre J. The heat shock response in yeast: differential regulation and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol. Microbiol. 33:1999;274-283.
    • (1999) Mol. Microbiol. , vol.33 , pp. 274-283
    • Boy-Marcotte, E.1    Lagniel, G.2    Perrot, M.3    Busereau, F.4    Boudsocq, A.5    Jacquet, M.6    Labarre, J.7
  • 36
    • 0032530778 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase
    • Reinders A., Burckert N., Boller T., Wiemken A., De Virgilio C. Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Dev. 12:1998;2943-2955.
    • (1998) Genes Dev. , vol.12 , pp. 2943-2955
    • Reinders, A.1    Burckert, N.2    Boller, T.3    Wiemken, A.4    De Virgilio, C.5
  • 38
    • 0026935588 scopus 로고
    • Heat-shock proteins and stress tolerance in microorganism
    • Lindquist S. Heat-shock proteins and stress tolerance in microorganism. Curr. Opin. Genet. Dev. 2:1992;748-755.
    • (1992) Curr. Opin. Genet. Dev. , vol.2 , pp. 748-755
    • Lindquist, S.1
  • 39
    • 0025755922 scopus 로고
    • Heat shock factor and heat shock response
    • Sorger P.K. Heat shock factor and heat shock response. Cell. 65:1991;363-366.
    • (1991) Cell , vol.65 , pp. 363-366
    • Sorger, P.K.1
  • 40
    • 0029157385 scopus 로고
    • Stress-induced transcriptional activation
    • Mager W.H., De Kruijff A.J. Stress-induced transcriptional activation. Microbiol. Rev. 59:1995;506-531.
    • (1995) Microbiol. Rev. , vol.59 , pp. 506-531
    • Mager, W.H.1    De Kruijff, A.J.2
  • 41
    • 0028222344 scopus 로고
    • Fine structure analyses of the Drosophila and Saccharomyces heat shock factor-heat shock element interactions
    • Fernández M., Xiao H., Lis J.T. Fine structure analyses of the Drosophila and Saccharomyces heat shock factor-heat shock element interactions. Nucleic Acids Res. 22:1994;167-173.
    • (1994) Nucleic Acids Res. , vol.22 , pp. 167-173
    • Fernández, M.1    Xiao, H.2    Lis, J.T.3
  • 42
    • 0031771494 scopus 로고    scopus 로고
    • Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor
    • Santoro N., Johansson N., Thiele D.J. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor. Mol. Cell. Biol. 18:1998;6340-6352.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 6340-6352
    • Santoro, N.1    Johansson, N.2    Thiele, D.J.3
  • 43
    • 0028047311 scopus 로고
    • Interactions between DNA-bound trimers of the yeast heat shock factor
    • Bonner J.J., Ballou C., Fackenthal D.L. Interactions between DNA-bound trimers of the yeast heat shock factor. Mol. Cell. Biol. 14:1994;501-508.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 501-508
    • Bonner, J.J.1    Ballou, C.2    Fackenthal, D.L.3
  • 44
    • 0025965278 scopus 로고
    • Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit
    • Xiao H., Perisic O., Lis J.T. Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell. 64:1991;585-593.
    • (1991) Cell , vol.64 , pp. 585-593
    • Xiao, H.1    Perisic, O.2    Lis, J.T.3
  • 45
    • 0024282788 scopus 로고
    • Isolation of the gene encoding the S. cerevisiae heat shock transcription factor
    • Wiederrecht G., Seto D., Parker C.S. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell. 54:1988;841-853.
    • (1988) Cell , vol.54 , pp. 841-853
    • Wiederrecht, G.1    Seto, D.2    Parker, C.S.3
  • 46
    • 0027958045 scopus 로고
    • Crystal structure of the DNA binding domain of the heat shock transcription factor
    • Harrison C.J., Bohm A.A., Nelson H.C. Crystal structure of the DNA binding domain of the heat shock transcription factor. Science. 263:1994;224-227.
    • (1994) Science , vol.263 , pp. 224-227
    • Harrison, C.J.1    Bohm, A.A.2    Nelson, H.C.3
  • 47
    • 0022129510 scopus 로고
    • Sequences required for in vitro transcriptional activation of a Drosophila hsp70 gene
    • Topol J., Ruden D.M., Parker C.S. Sequences required for in vitro transcriptional activation of a Drosophila hsp70 gene. Cell. 42:1985;527-537.
    • (1985) Cell , vol.42 , pp. 527-537
    • Topol, J.1    Ruden, D.M.2    Parker, C.S.3
  • 48
    • 0025122831 scopus 로고
    • The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under non-shock conditions
    • Nieto-Sotelo J., Wiederrecht G., Okuda A., Parker C.S. The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under non-shock conditions. Cell. 62:1990;807-817.
    • (1990) Cell , vol.62 , pp. 807-817
    • Nieto-Sotelo, J.1    Wiederrecht, G.2    Okuda, A.3    Parker, C.S.4
  • 49
    • 0024989583 scopus 로고
    • Yeast heat shock factor contains separable transient and sustained response transcriptional activators
    • Sorger P.K. Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell. 62:1990;793-805.
    • (1990) Cell , vol.62 , pp. 793-805
    • Sorger, P.K.1
  • 50
    • 0027940568 scopus 로고
    • Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways
    • Tamai K.T., Liu X., Silar P., Sosinowski T., Thiele D.J. Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol. Cell. Biol. 14:1994;8155-8165.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 8155-8165
    • Tamai, K.T.1    Liu, X.2    Silar, P.3    Sosinowski, T.4    Thiele, D.J.5
  • 51
    • 0023701108 scopus 로고
    • Constitutive binding of yeast heat shock factor to DNA in vivo
    • Jakobsen B.K., Pelham H.R. Constitutive binding of yeast heat shock factor to DNA in vivo. Mol. Cell. Biol. 8:1988;5040-5042.
    • (1988) Mol. Cell. Biol. , vol.8 , pp. 5040-5042
    • Jakobsen, B.K.1    Pelham, H.R.2
  • 52
    • 0023643235 scopus 로고
    • Heat shock factor is regulated differently in yeast and HeLa cells
    • Sorger P.K., Lewis M.J., Pelham H.R. Heat shock factor is regulated differently in yeast and HeLa cells. Nature. 329:1987;81-84.
    • (1987) Nature , vol.329 , pp. 81-84
    • Sorger, P.K.1    Lewis, M.J.2    Pelham, H.R.3
  • 53
    • 0028911832 scopus 로고
    • Dynamic protein-DNA architecture of a yeast heat shock promoter
    • Giardina C., Lis J.T. Dynamic protein-DNA architecture of a yeast heat shock promoter. Mol. Cell. Biol. 15:1995;2737-2744.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 2737-2744
    • Giardina, C.1    Lis, J.T.2
  • 54
    • 0025955517 scopus 로고
    • Stress-induced oligomerization and chromosomal relocalization of heat-shock factor
    • Westwood J.T., Clos J., Wu C. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature. 353:1991;822-827.
    • (1991) Nature , vol.353 , pp. 822-827
    • Westwood, J.T.1    Clos, J.2    Wu, C.3
  • 55
    • 0029664413 scopus 로고    scopus 로고
    • Oxidative stress induced heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription
    • Liu X.D., Thiele D.J. Oxidative stress induced heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription. Genes Dev. 10:1996;592-603.
    • (1996) Genes Dev. , vol.10 , pp. 592-603
    • Liu, X.D.1    Thiele, D.J.2
  • 56
    • 0001874126 scopus 로고    scopus 로고
    • The heat shock response
    • (Hohmann, S. and Mager, W.H., Eds.), Springer-Verlag, Heldelberg
    • Piper, P. (1997) The heat shock response. In: Yeast Stress Responses (Hohmann, S. and Mager, W.H., Eds.), pp. 75-99. Springer-Verlag, Heldelberg.
    • (1997) In: Yeast Stress Responses , pp. 75-99
    • Piper, P.1
  • 57
    • 0034695416 scopus 로고    scopus 로고
    • Role of an α-helical bulge in the yeast heat shock transcription factor
    • Hardy J.A., Walsh S.T.R., Nelson H.C.M. Role of an α-helical bulge in the yeast heat shock transcription factor. J. Mol. Biol. 295:2000;393-409.
    • (2000) J. Mol. Biol. , vol.295 , pp. 393-409
    • Hardy, J.A.1    Walsh, S.T.R.2    Nelson, H.C.M.3
  • 58
    • 0025967766 scopus 로고
    • Is hsp70 the cellular thermometer?
    • Craig E.A., Gross C.A. Is hsp70 the cellular thermometer? Trends Biochem. Sci. 16:1991;135-140.
    • (1991) Trends Biochem. Sci. , vol.16 , pp. 135-140
    • Craig, E.A.1    Gross, C.A.2
  • 59
    • 0032031725 scopus 로고    scopus 로고
    • Molecular chaperones as HSF1-specific transcriptional repressors
    • Shi Y., Mosser D.D., Morimoto R.I. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12:1998;654-666.
    • (1998) Genes Dev. , vol.12 , pp. 654-666
    • Shi, Y.1    Mosser, D.D.2    Morimoto, R.I.3
  • 60
    • 0002237472 scopus 로고
    • Cytosolic hsp70 of Saccharomyces cerevisiae: roles in protein synthesis, protein translocation, proteolysis, and regulation
    • (Morimoto R.I. et al., Eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    • Craig, E.A., Baxter, B.K., Becker, J., Halladay, J. and Zigelhoffer, T. (1994) Cytosolic hsp70 of Saccharomyces cerevisiae: roles in protein synthesis, protein translocation, proteolysis, and regulation. In: The Biology of Heat Shock Proteins and Molecular Chaperones (Morimoto R.I. et al., Eds.), pp. 31-52. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    • (1994) In: The Biology of Heat Shock Proteins and Molecular Chaperones , pp. 31-52
    • Craig, E.A.1    Baxter, B.K.2    Becker, J.3    Halladay, J.4    Zigelhoffer, T.5
  • 61
    • 0026342691 scopus 로고
    • A mutation in the yeast heat-shock factor gene causes temperature-sensitive defects in both mitochondrial protein import and the cell cycle
    • Smith B.J., Yaffe M.P. A mutation in the yeast heat-shock factor gene causes temperature-sensitive defects in both mitochondrial protein import and the cell cycle. Mol. Cell. Biol. 11:1991;2647-2655.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 2647-2655
    • Smith, B.J.1    Yaffe, M.P.2
  • 62
    • 0021059412 scopus 로고
    • Yeast thermotolerance does not require protein synthesis
    • Hall B.G. Yeast thermotolerance does not require protein synthesis. J. Bacteriol. 156:1983;1363-1365.
    • (1983) J. Bacteriol. , vol.156 , pp. 1363-1365
    • Hall, B.G.1
  • 63
    • 0021758881 scopus 로고
    • Mitochondrial and cytoplasmatic protein synthesis are not required for heat shock acquisition of ethanol and thermotolerance in yeast
    • Watson K., Dunlop G., Cavicchioli R. Mitochondrial and cytoplasmatic protein synthesis are not required for heat shock acquisition of ethanol and thermotolerance in yeast. FEBS Lett. 172:1984;299-302.
    • (1984) FEBS Lett. , vol.172 , pp. 299-302
    • Watson, K.1    Dunlop, G.2    Cavicchioli, R.3
  • 64
    • 0025894783 scopus 로고
    • Induction of increased thermotolerance in Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH
    • Coote P.J., Cole M.B., Jones M.V. Induction of increased thermotolerance in Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH. J. Gen. Microbiol. 137:1991;1701-1708.
    • (1991) J. Gen. Microbiol. , vol.137 , pp. 1701-1708
    • Coote, P.J.1    Cole, M.B.2    Jones, M.V.3
  • 65
    • 0026322998 scopus 로고
    • Uncoupling thermotolerance from the induction of heat shock proteins
    • Smith B.J., Yaffe M.P. Uncoupling thermotolerance from the induction of heat shock proteins. Proc. Natl. Acad. Sci. USA. 88:1991;11091-11094.
    • (1991) Proc. Natl. Acad. Sci. USA , vol.88 , pp. 11091-11094
    • Smith, B.J.1    Yaffe, M.P.2
  • 66
    • 0025193343 scopus 로고
    • HSP104 is required for induced thermotolerance
    • Sánchez Y., Lindquist S.L. HSP104 is required for induced thermotolerance. Science. 248:1990;1112-1115.
    • (1990) Science , vol.248 , pp. 1112-1115
    • Sánchez, Y.1    Lindquist, S.L.2
  • 67
    • 0029950703 scopus 로고    scopus 로고
    • Heat-shock protein 104 expression is sufficient for thermotolerance
    • Lindquist S., Kim G. Heat-shock protein 104 expression is sufficient for thermotolerance. Proc. Natl. Acad. Sci. USA. 93:1996;5301-5306.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 5301-5306
    • Lindquist, S.1    Kim, G.2
  • 68
    • 0025915014 scopus 로고
    • Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp 104 and in the absence of protein synthesis
    • De Virgilio C., Piper P., Boller T., Wiemken A. Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp 104 and in the absence of protein synthesis. FEBS Lett. 288:1991;86-90.
    • (1991) FEBS Lett. , vol.288 , pp. 86-90
    • De Virgilio, C.1    Piper, P.2    Boller, T.3    Wiemken, A.4
  • 69
    • 0029861940 scopus 로고    scopus 로고
    • Synergy between trehalose and Hsp104 for thermotolerance in Saccharomyces cerevisiae
    • Elliott B., Haltiwanger R.S., Futcher B. Synergy between trehalose and Hsp104 for thermotolerance in Saccharomyces cerevisiae. Genetics. 144:1996;923-933.
    • (1996) Genetics , vol.144 , pp. 923-933
    • Elliott, B.1    Haltiwanger, R.S.2    Futcher, B.3
  • 70
    • 0027135501 scopus 로고
    • The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins
    • Parsell D.A., Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27:1993;437-496.
    • (1993) Annu. Rev. Genet. , vol.27 , pp. 437-496
    • Parsell, D.A.1    Lindquist, S.2
  • 71
    • 0028921261 scopus 로고
    • The dissociation of ATP from hsp70 of Saccharomyces cerevisiae is stimulated by both Ydj1p and peptide substrates
    • Ziegelhoffer T., Lopez-Buesa P., Craig E.A. The dissociation of ATP from hsp70 of Saccharomyces cerevisiae is stimulated by both Ydj1p and peptide substrates. J. Biol. Chem. 270:1995;10412-10419.
    • (1995) J. Biol. Chem. , vol.270 , pp. 10412-10419
    • Ziegelhoffer, T.1    Lopez-Buesa, P.2    Craig, E.A.3
  • 72
    • 0027996115 scopus 로고
    • Protein disaggregation mediated by heat-shock protein Hsp104
    • Parsell D.A., Kowal A.S., Singer M.A., Lindquist S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature. 372:1994;475-478.
    • (1994) Nature , vol.372 , pp. 475-478
    • Parsell, D.A.1    Kowal, A.S.2    Singer, M.A.3    Lindquist, S.4
  • 73
    • 0032503968 scopus 로고    scopus 로고
    • Hsp104, Hsp70 and Hsp40: A novel chaperone system that rescue previously aggregated proteins
    • Glover J.R., Lindquist S. Hsp104, Hsp70 and Hsp40: a novel chaperone system that rescue previously aggregated proteins. Cell. 94:1998;73-82.
    • (1998) Cell , vol.94 , pp. 73-82
    • Glover, J.R.1    Lindquist, S.2
  • 74
    • 0025777272 scopus 로고
    • Hsp104 is a highly conserved protein with two essential nucleotide-binding sites
    • Parsell D.A., Sánchez Y., Stitzel J.D., Lindquist S. Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature. 353:1991;270-273.
    • (1991) Nature , vol.353 , pp. 270-273
    • Parsell, D.A.1    Sánchez, Y.2    Stitzel, J.D.3    Lindquist, S.4
  • 75
    • 0026523626 scopus 로고
    • Hsp104 is required for tolerance to many forms of stress
    • Sánchez Y., Taulien J., Borkovich K.A., Lindquist S. Hsp104 is required for tolerance to many forms of stress. EMBO J. 11:1992;2357-2364.
    • (1992) EMBO J. , vol.11 , pp. 2357-2364
    • Sánchez, Y.1    Taulien, J.2    Borkovich, K.A.3    Lindquist, S.4
  • 76
    • 0026787869 scopus 로고
    • Stress-induced proteolysis in yeast
    • Hilt W., Wolf D.H. Stress-induced proteolysis in yeast. Mol. Microbiol. 6:1992;2437-2442.
    • (1992) Mol. Microbiol. , vol.6 , pp. 2437-2442
    • Hilt, W.1    Wolf, D.H.2
  • 78
    • 0028597439 scopus 로고
    • Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress
    • Jamieson D.J., Rivers S.L., Stephen D.W.S. Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress. Microbiology. 140:1994;3277-3283.
    • (1994) Microbiology , vol.140 , pp. 3277-3283
    • Jamieson, D.J.1    Rivers, S.L.2    Stephen, D.W.S.3
  • 79
    • 0024294370 scopus 로고
    • Transcriptional activation by the SV40 AP-1 recognition element in yeast is mediated by a factor similar to AP-1 that is distinct from GCN4
    • Harshman K.D., Moye-Rowley W.S., Parker C.S. Transcriptional activation by the SV40 AP-1 recognition element in yeast is mediated by a factor similar to AP-1 that is distinct from GCN4. Cell. 53:1988;321-330.
    • (1988) Cell , vol.53 , pp. 321-330
    • Harshman, K.D.1    Moye-Rowley, W.S.2    Parker, C.S.3
  • 80
    • 0028281573 scopus 로고
    • Overexpression of the SNQ3/YAP1 gene confers hyper-resistance to nitrosoguanidine in Saccharomyces cerevisiae via a glutathione-independent mechanism
    • Grey M., Brendel M. Overexpression of the SNQ3/YAP1 gene confers hyper-resistance to nitrosoguanidine in Saccharomyces cerevisiae via a glutathione-independent mechanism. Curr. Genet. 25:1994;469-471.
    • (1994) Curr. Genet. , vol.25 , pp. 469-471
    • Grey, M.1    Brendel, M.2
  • 81
    • 0025827822 scopus 로고
    • Characterization of PDR4, a Saccharomyces cerevisiae gene that confers pleiotropic drug resistance in high-copy number: Identity with YAP1, encoding a transcriptional activator
    • Hussain M., Lenard J. Characterization of PDR4, a Saccharomyces cerevisiae gene that confers pleiotropic drug resistance in high-copy number: identity with YAP1, encoding a transcriptional activator. Gene. 101:1991;149-152.
    • (1991) Gene , vol.101 , pp. 149-152
    • Hussain, M.1    Lenard, J.2
  • 82
    • 0025788815 scopus 로고
    • Identification and characterization of a Saccharomyces cerevisiae gene (PAR1) conferring resistance to iron chelators
    • Schnell N., Entian K.D. Identification and characterization of a Saccharomyces cerevisiae gene (PAR1) conferring resistance to iron chelators. Eur. J. Biochem. 200:1991;487-493.
    • (1991) Eur. J. Biochem. , vol.200 , pp. 487-493
    • Schnell, N.1    Entian, K.D.2
  • 83
    • 0026560388 scopus 로고
    • The PAR1 (YAP1/SNQ3) gene of Saccharomyces cerevisiae, a c-jun homologue, is involved in oxygen metabolism
    • Schnell N., Krems B., Entian K.D. The PAR1 (YAP1/SNQ3) gene of Saccharomyces cerevisiae, a c-jun homologue, is involved in oxygen metabolism. Curr. Genet. 21:1992;269-273.
    • (1992) Curr. Genet. , vol.21 , pp. 269-273
    • Schnell, N.1    Krems, B.2    Entian, K.D.3
  • 84
    • 0027505025 scopus 로고
    • Overexpression of YAP2, coding for a new yAP protein, and YAP1 in Saccharomyces cerevisiae alleviates growth inhibition caused by 1,10-phenanthroline
    • Dossier P., Fernándes L., Rocha D., Rodrigues-Pousada C. Overexpression of YAP2, coding for a new yAP protein, and YAP1 in Saccharomyces cerevisiae alleviates growth inhibition caused by 1,10-phenanthroline. J. Biol. Chem. 268:1993;23640-23650.
    • (1993) J. Biol. Chem. , vol.268 , pp. 23640-23650
    • Dossier, P.1    Fernándes, L.2    Rocha, D.3    Rodrigues-Pousada, C.4
  • 85
    • 0030712874 scopus 로고    scopus 로고
    • Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions
    • Fernandes L., Rodrigues-Pousada C., Struhl K. Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol. Cell. Biol. 17:1997;6982-6993.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 6982-6993
    • Fernandes, L.1    Rodrigues-Pousada, C.2    Struhl, K.3
  • 87
    • 0030942294 scopus 로고    scopus 로고
    • Regulation of yAP-1 nuclear localization in response to oxidative stress
    • Kuge S., Jones N., Nomoto A. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J. 16:1997;1710-1720.
    • (1997) EMBO J. , vol.16 , pp. 1710-1720
    • Kuge, S.1    Jones, N.2    Nomoto, A.3
  • 88
    • 0032535486 scopus 로고    scopus 로고
    • Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor
    • Yan C., Lee L.H., Davis L.I. Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J. 17:1998;7416-7429.
    • (1998) EMBO J. , vol.17 , pp. 7416-7429
    • Yan, C.1    Lee, L.H.2    Davis, L.I.3
  • 89
    • 0031595764 scopus 로고    scopus 로고
    • Crm1 (XpoI) dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress
    • Kuge S., Toda T., Iizuka N., Nomoto A. Crm1 (XpoI) dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress. Genes Cells. 3:1998;521-532.
    • (1998) Genes Cells , vol.3 , pp. 521-532
    • Kuge, S.1    Toda, T.2    Iizuka, N.3    Nomoto, A.4
  • 91
    • 0028906080 scopus 로고
    • Mutants of Saccharomyces cerevisiae sensitive to oxidative and osmotic stress
    • Krems B., Charizanis C., Entian K.D. Mutants of Saccharomyces cerevisiae sensitive to oxidative and osmotic stress. Curr. Genet. 27:1995;427-434.
    • (1995) Curr. Genet. , vol.27 , pp. 427-434
    • Krems, B.1    Charizanis, C.2    Entian, K.D.3
  • 92
    • 0028076328 scopus 로고
    • Yeast Skn7p functions in a eukaryotic two-component regulatory pathway
    • Brown J.L., Bussey H., Stewart R.C. Yeast Skn7p functions in a eukaryotic two-component regulatory pathway. EMBO J. 13:1994;5186-5194.
    • (1994) EMBO J. , vol.13 , pp. 5186-5194
    • Brown, J.L.1    Bussey, H.2    Stewart, R.C.3
  • 93
    • 0033034170 scopus 로고    scopus 로고
    • The oxidative stress response mediated via Pos9/Skn7 is negatively regulated by the Ras/PKA pathway in Saccharomyces cerevisiae
    • Charizanis C., Juhnke H., Krems B., Entian K.D. The oxidative stress response mediated via Pos9/Skn7 is negatively regulated by the Ras/PKA pathway in Saccharomyces cerevisiae. Mol. Gen. Genet. 261:1999;740-752.
    • (1999) Mol. Gen. Genet. , vol.261 , pp. 740-752
    • Charizanis, C.1    Juhnke, H.2    Krems, B.3    Entian, K.D.4
  • 94
    • 0032717193 scopus 로고    scopus 로고
    • The mitochondrial cytochrome c peroxidase Ccp1 of Saccharomyces cerevisiae is involved in conveying an oxidative stress signal to the transcription factor Pos9 (Skn7)
    • Charizanis C., Juhnke H., Krems B., Entian K.D. The mitochondrial cytochrome c peroxidase Ccp1 of Saccharomyces cerevisiae is involved in conveying an oxidative stress signal to the transcription factor Pos9 (Skn7). Mol. Gen. Genet. 262:1999;437-447.
    • (1999) Mol. Gen. Genet. , vol.262 , pp. 437-447
    • Charizanis, C.1    Juhnke, H.2    Krems, B.3    Entian, K.D.4
  • 95
    • 0028805253 scopus 로고
    • A yeast transcription factor bypassing the requirement for SBF and DSC1/MBF in budding yeast has homology to bacterial signal transduction proteins
    • Morgan B.A., Bouquin N., Merrill G.F., Johnston L.H. A yeast transcription factor bypassing the requirement for SBF and DSC1/MBF in budding yeast has homology to bacterial signal transduction proteins. EMBO J. 14:1995;5679-5689.
    • (1995) EMBO J. , vol.14 , pp. 5679-5689
    • Morgan, B.A.1    Bouquin, N.2    Merrill, G.F.3    Johnston, L.H.4
  • 96
    • 0027501822 scopus 로고
    • SKN7, a yeast multicopy suppressor of a mutation affecting cell wall beta-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors
    • Brown J.L., North S., Bussey H. SKN7, a yeast multicopy suppressor of a mutation affecting cell wall beta-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors. J. Bacteriol. 175:1993;6908-6915.
    • (1993) J. Bacteriol. , vol.175 , pp. 6908-6915
    • Brown, J.L.1    North, S.2    Bussey, H.3
  • 97
    • 0031048280 scopus 로고    scopus 로고
    • The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae
    • Morgan B.A., Banks G.R., Toone W.M., Raitt D., Kuge S., Johnston L.H. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 16:1997;1035-1044.
    • (1997) EMBO J. , vol.16 , pp. 1035-1044
    • Morgan, B.A.1    Banks, G.R.2    Toone, W.M.3    Raitt, D.4    Kuge, S.5    Johnston, L.H.6
  • 99
    • 0032439653 scopus 로고    scopus 로고
    • Oxidative stress responses of yeast Saccharomyces cerevisiae
    • Jamieson D.J. Oxidative stress responses of yeast Saccharomyces cerevisiae. Yeast. 14:1998;1511-1527.
    • (1998) Yeast , vol.14 , pp. 1511-1527
    • Jamieson, D.J.1
  • 100
    • 0029042565 scopus 로고
    • Oxidative stress response in yeast: Effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae
    • Izawa S., Inoue Y., Kimura A. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett. 368:1995;73-76.
    • (1995) FEBS Lett. , vol.368 , pp. 73-76
    • Izawa, S.1    Inoue, Y.2    Kimura, A.3
  • 101
    • 0030747207 scopus 로고    scopus 로고
    • Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine
    • Grant C.M., MacIver F.H., Dawes I.W. Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine. Mol. Biol. Cell. 8:1997;1699-1707.
    • (1997) Mol. Biol. Cell , vol.8 , pp. 1699-1707
    • Grant, C.M.1    MacIver, F.H.2    Dawes, I.W.3
  • 102
    • 0029013534 scopus 로고
    • The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae
    • Stephen D.W., Rivers S.L., Jamieson D.J. The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol. Microbiol. 16:1995;415-423.
    • (1995) Mol. Microbiol. , vol.16 , pp. 415-423
    • Stephen, D.W.1    Rivers, S.L.2    Jamieson, D.J.3
  • 103
    • 0030041567 scopus 로고    scopus 로고
    • The molecular defences against reactive oxygen species in yeast
    • Moradas-Ferreira P., Costa V., Piper P., Mager W. The molecular defences against reactive oxygen species in yeast. Mol. Microbiol. 19:1996;651-658.
    • (1996) Mol. Microbiol. , vol.19 , pp. 651-658
    • Moradas-Ferreira, P.1    Costa, V.2    Piper, P.3    Mager, W.4
  • 104
    • 0033525509 scopus 로고    scopus 로고
    • Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae
    • Pedrajas J.R., Kosmidou E., Miranda-Vizuete A., Gustafsson J.A., Wright A.P., Spyrou G. Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J. Biol. Chem. 274:1999;6366-6373.
    • (1999) J. Biol. Chem. , vol.274 , pp. 6366-6373
    • Pedrajas, J.R.1    Kosmidou, E.2    Miranda-Vizuete, A.3    Gustafsson, J.A.4    Wright, A.P.5    Spyrou, G.6
  • 105
    • 0025740886 scopus 로고
    • Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle
    • Muller E.G. Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle. J. Biol. Chem. 266:1991;9194-9202.
    • (1991) J. Biol. Chem. , vol.266 , pp. 9194-9202
    • Muller, E.G.1
  • 106
    • 0032539799 scopus 로고    scopus 로고
    • In vivo functional discrimination between plant thioredoxins by heterologous expression in the yeast Saccharomyces cerevisiae
    • Mouaheb N., Thomas D., Verdoucq L., Monfort P., Meyer Y. In vivo functional discrimination between plant thioredoxins by heterologous expression in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 95:1998;3312-3317.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 3312-3317
    • Mouaheb, N.1    Thomas, D.2    Verdoucq, L.3    Monfort, P.4    Meyer, Y.5
  • 107
    • 0033582416 scopus 로고    scopus 로고
    • A new antioxidant with alkyl hydroperoxide defense properties in yeast
    • Lee J., Spector D., Godon C., Labarre J., Toledano M.B. A new antioxidant with alkyl hydroperoxide defense properties in yeast. J. Biol. Chem. 274:1999;4537-4544.
    • (1999) J. Biol. Chem. , vol.274 , pp. 4537-4544
    • Lee, J.1    Spector, D.2    Godon, C.3    Labarre, J.4    Toledano, M.B.5
  • 108
    • 0030841865 scopus 로고    scopus 로고
    • Thioredoxin reductase-dependent inhibition of MCB cell cycle box activity in Saccharomyces cerevisiae
    • Machado A.K., Morgan B.A., Merrill G.F. Thioredoxin reductase-dependent inhibition of MCB cell cycle box activity in Saccharomyces cerevisiae. J. Biol. Chem. 272:1997;17045-17054.
    • (1997) J. Biol. Chem. , vol.272 , pp. 17045-17054
    • MacHado, A.K.1    Morgan, B.A.2    Merrill, G.F.3
  • 109
    • 0031719952 scopus 로고    scopus 로고
    • The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species
    • Luikenhuis S., Perrone G., Dawes I.W., Grant C.M. The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol. Biol. Cell. 9:1998;1081-1091.
    • (1998) Mol. Biol. Cell , vol.9 , pp. 1081-1091
    • Luikenhuis, S.1    Perrone, G.2    Dawes, I.W.3    Grant, C.M.4
  • 110
    • 0040932016 scopus 로고    scopus 로고
    • Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae
    • Rodriguez-Manzaneque M.T., Ros J., Cabiscol E., Sorribas A., Herrero E. Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:1999;8180-8190.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 8180-8190
    • Rodriguez-Manzaneque, M.T.1    Ros, J.2    Cabiscol, E.3    Sorribas, A.4    Herrero, E.5
  • 111
    • 0027426263 scopus 로고
    • Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo
    • Guidot D.M., McCord J.M., Wright R.M., Repine J.E. Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo. J. Biol. Chem. 268:1993;26699-26703.
    • (1993) J. Biol. Chem. , vol.268 , pp. 26699-26703
    • Guidot, D.M.1    McCord, J.M.2    Wright, R.M.3    Repine, J.E.4
  • 113
    • 0039604509 scopus 로고
    • A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen
    • Van Loon A.P., Pesold-Hurt B., Schatz G. A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc. Natl. Acad. Sci. USA. 83:1986;3820-3824.
    • (1986) Proc. Natl. Acad. Sci. USA , vol.83 , pp. 3820-3824
    • Van Loon, A.P.1    Pesold-Hurt, B.2    Schatz, G.3
  • 114
    • 0026679293 scopus 로고
    • Molecular genetics of superoxide dismutases in yeasts and related fungi
    • Gralla E.B., Kosman D.J. Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv. Genet. 30:1992;251-319.
    • (1992) Adv. Genet. , vol.30 , pp. 251-319
    • Gralla, E.B.1    Kosman, D.J.2
  • 115
    • 0032553445 scopus 로고    scopus 로고
    • Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae. Identification of proteins predicted to mediate iron-sulfur cluster assembly
    • Strain J., Lorenz C.R., Bode J., Garland S., Smolen G.A., Ta D.T., Vickery L.E., Culotta V.C. Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae. Identification of proteins predicted to mediate iron-sulfur cluster assembly. J. Biol. Chem. 273:1998;31138-31144.
    • (1998) J. Biol. Chem. , vol.273 , pp. 31138-31144
    • Strain, J.1    Lorenz, C.R.2    Bode, J.3    Garland, S.4    Smolen, G.A.5    Ta, D.T.6    Vickery, L.E.7    Culotta, V.C.8
  • 116
    • 0038153078 scopus 로고
    • A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering
    • Culotta V.C., Joh H.D., Lin S.J., Slekar K.H., Strain J. A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering. J. Biol. Chem. 270:1995;29991-29997.
    • (1995) J. Biol. Chem. , vol.270 , pp. 29991-29997
    • Culotta, V.C.1    Joh, H.D.2    Lin, S.J.3    Slekar, K.H.4    Strain, J.5
  • 117
    • 0032006077 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae LYS7 gene is involved in oxidative stress protection
    • Gamonet F., Lauquin G.J. The Saccharomyces cerevisiae LYS7 gene is involved in oxidative stress protection. Eur. J. Biochem. 251:1998;716-723.
    • (1998) Eur. J. Biochem. , vol.251 , pp. 716-723
    • Gamonet, F.1    Lauquin, G.J.2
  • 118
    • 0029899159 scopus 로고    scopus 로고
    • Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae
    • Davidson J.F., Whyte B., Bissinger P.H., Schiestl R.H. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 93:1996;5116-5121.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 5116-5121
    • Davidson, J.F.1    Whyte, B.2    Bissinger, P.H.3    Schiestl, R.H.4
  • 119
    • 0028106363 scopus 로고
    • The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene
    • Schüller C., Brewster J.L., Alexander M.R., Gustin M.C., Ruis H. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 13:1994;4382-4389.
    • (1994) EMBO J. , vol.13 , pp. 4382-4389
    • Schüller, C.1    Brewster, J.L.2    Alexander, M.R.3    Gustin, M.C.4    Ruis, H.5
  • 120
    • 0031717526 scopus 로고    scopus 로고
    • Stress-activated signalling pathways in yeast
    • Toone W.M., Jones N. Stress-activated signalling pathways in yeast. Genes Cells. 3:1998;485-498.
    • (1998) Genes Cells , vol.3 , pp. 485-498
    • Toone, W.M.1    Jones, N.2
  • 121
    • 0032189837 scopus 로고    scopus 로고
    • Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1
    • Ferrigno P., Posas F., Koepp D., Saito H., Silver P.A. Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J. 17:1998;5606-5614.
    • (1998) EMBO J. , vol.17 , pp. 5606-5614
    • Ferrigno, P.1    Posas, F.2    Koepp, D.3    Saito, H.4    Silver, P.A.5
  • 122
    • 0032960856 scopus 로고    scopus 로고
    • Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae
    • Reiser V., Ruis H., Ammerer G. Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol. Biol. Cell. 10:1999;1147-1161.
    • (1999) Mol. Biol. Cell , vol.10 , pp. 1147-1161
    • Reiser, V.1    Ruis, H.2    Ammerer, G.3
  • 123
    • 0025651676 scopus 로고
    • Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the SNF1 protein kinase
    • Estruch F., Carlson M. Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the SNF1 protein kinase. Nucleic Acids Res. 18:1990;6959-6964.
    • (1990) Nucleic Acids Res. , vol.18 , pp. 6959-6964
    • Estruch, F.1    Carlson, M.2
  • 124
    • 0026512310 scopus 로고
    • Increased dosage of a transcriptional activator gene enhances iron-limited growth of Saccharomyces cerevisiae
    • Eide D., Guarente L. Increased dosage of a transcriptional activator gene enhances iron-limited growth of Saccharomyces cerevisiae. J. Gen. Microbiol. 138:1992;347-354.
    • (1992) J. Gen. Microbiol. , vol.138 , pp. 347-354
    • Eide, D.1    Guarente, L.2
  • 125
    • 0029665872 scopus 로고    scopus 로고
    • A multicopy suppressor gene, MSS10, restores STA2 expression in Saccharomyces cerevisiae strains containing the STA10 repressor gene
    • Lambrechts M.G., Sollitti P., Marmur J., Pretorius I.S. A multicopy suppressor gene, MSS10, restores STA2 expression in Saccharomyces cerevisiae strains containing the STA10 repressor gene. Curr. Genet. 29:1996;523-529.
    • (1996) Curr. Genet. , vol.29 , pp. 523-529
    • Lambrechts, M.G.1    Sollitti, P.2    Marmur, J.3    Pretorius, I.S.4
  • 126
    • 0032933350 scopus 로고    scopus 로고
    • Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: BZIP protein Sko1p confers HOG-dependent osmotic regulation
    • Proft M., Serrano R. Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol. Cell. Biol. 19:1999;537-546.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 537-546
    • Proft, M.1    Serrano, R.2
  • 127
    • 0034708436 scopus 로고    scopus 로고
    • The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes
    • Rep M., Krantz M., Thevelein J.M., Hohmann S. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol. Chem. 275:2000;8290-8300.
    • (2000) J. Biol. Chem. , vol.275 , pp. 8290-8300
    • Rep, M.1    Krantz, M.2    Thevelein, J.M.3    Hohmann, S.4
  • 129
    • 0030878249 scopus 로고    scopus 로고
    • Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: Genetic evidence for a stress-induced recycling of glycogen and trehalose
    • Parrou J.L., Teste M.A., Francois J. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology. 143:1997;1891-1900.
    • (1997) Microbiology , vol.143 , pp. 1891-1900
    • Parrou, J.L.1    Teste, M.A.2    Francois, J.3
  • 130
    • 0032964932 scopus 로고    scopus 로고
    • Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae
    • Parrou J.L., Enjalbert B., Plourde L., Bauche A., Gonzalez B., Francois J. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast. 15:1999;191-203.
    • (1999) Yeast , vol.15 , pp. 191-203
    • Parrou, J.L.1    Enjalbert, B.2    Plourde, L.3    Bauche, A.4    Gonzalez, B.5    Francois, J.6
  • 131
    • 0027531645 scopus 로고
    • An osmosensing signal transduction pathway in yeast
    • Brewster J.L., de Valoir T., Dwyer N.D., Gustin M.C. An osmosensing signal transduction pathway in yeast. Science. 259:1993;1760-1763.
    • (1993) Science , vol.259 , pp. 1760-1763
    • Brewster, J.L.1    De Valoir, T.2    Dwyer, N.D.3    Gustin, M.C.4
  • 132
    • 0028302033 scopus 로고
    • GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway
    • Albertyn J., Hohmann S., Thevelein J.M., Prior B.A. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 14:1994;4135-4144.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 4135-4144
    • Albertyn, J.1    Hohmann, S.2    Thevelein, J.M.3    Prior, B.A.4
  • 133
    • 0001656881 scopus 로고    scopus 로고
    • Shaping up: The response of yeast to osmotic stress
    • (Hohmann, S. and Mager, W.H., Eds.), Springer-Verlag, Heldelberg
    • Hohmann, S. (1997) Shaping up: the response of yeast to osmotic stress. In: Yeast Stress Responses (Hohmann, S. and Mager, W.H., Eds.), pp. 101-145. Springer-Verlag, Heldelberg.
    • (1997) In: Yeast Stress Responses , pp. 101-145
    • Hohmann, S.1
  • 134
    • 0242475404 scopus 로고    scopus 로고
    • Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae
    • Bjorkqvist S., Ansell R., Adler L., Liden G. Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 63:1997;128-132.
    • (1997) Appl. Environ. Microbiol. , vol.63 , pp. 128-132
    • Bjorkqvist, S.1    Ansell, R.2    Adler, L.3    Liden, G.4
  • 135
    • 0028055202 scopus 로고
    • Characterization of the osmotic-stress response in Saccharomyces cerevisiae: Osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently
    • Albertyn J., Hohmann S., Prior B.A. Characterization of the osmotic-stress response in Saccharomyces cerevisiae: osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently. Curr. Genet. 25:1994;12-18.
    • (1994) Curr. Genet. , vol.25 , pp. 12-18
    • Albertyn, J.1    Hohmann, S.2    Prior, B.A.3
  • 136
    • 0030908893 scopus 로고    scopus 로고
    • +-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
    • +-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 16:1997;2179-2187.
    • (1997) EMBO J. , vol.16 , pp. 2179-2187
    • Ansell, R.1    Granath, K.2    Hohmann, S.3    Thevelein, J.M.4    Adler, L.5
  • 137
    • 0029920291 scopus 로고    scopus 로고
    • Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway
    • Norbeck J., Pahlman A.K., Akhtar N., Blomberg A., Adler L. Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 271:1996;13875-13880.
    • (1996) J. Biol. Chem. , vol.271 , pp. 13875-13880
    • Norbeck, J.1    Pahlman, A.K.2    Akhtar, N.3    Blomberg, A.4    Adler, L.5
  • 138
    • 0028947362 scopus 로고
    • Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress
    • Luyten K., Albertyn J., Skibbe W.F., Prior B.A., Ramos J., Thevelein J.M., Hohmann S. Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J. 14:1995;1360-1371.
    • (1995) EMBO J. , vol.14 , pp. 1360-1371
    • Luyten, K.1    Albertyn, J.2    Skibbe, W.F.3    Prior, B.A.4    Ramos, J.5    Thevelein, J.M.6    Hohmann, S.7
  • 140
    • 0032213339 scopus 로고    scopus 로고
    • Thermotolerance in Saccharomyces cerevisiae: The Yin and Yang of trehalose
    • Singer M.A., Lindquist S. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol. 16:1998;460-468.
    • (1998) Trends Biotechnol. , vol.16 , pp. 460-468
    • Singer, M.A.1    Lindquist, S.2
  • 141
    • 0027488605 scopus 로고
    • Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae
    • Vuorio O.E., Kalkkinen N., Londesborough J. Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 216:1993;849-861.
    • (1993) Eur. J. Biochem. , vol.216 , pp. 849-861
    • Vuorio, O.E.1    Kalkkinen, N.2    Londesborough, J.3
  • 142
    • 0027446935 scopus 로고
    • Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity
    • De Virgilio C., Burckert N., Bell W., Jeno P., Boller T., Wiemken A. Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur. J. Biochem. 212:1993;315-323.
    • (1993) Eur. J. Biochem. , vol.212 , pp. 315-323
    • De Virgilio, C.1    Burckert, N.2    Bell, W.3    Jeno, P.4    Boller, T.5    Wiemken, A.6
  • 143
    • 0002403263 scopus 로고    scopus 로고
    • From feast to famine: adaptation to nutrient depletion in yeast
    • (Hohmann, S. and Mager, W.H., Eds.), Springer-Verlag, Heldelberg
    • de Winde, J.H., Thevelein, J.M. and Winderickx, J. (1997) From feast to famine: adaptation to nutrient depletion in yeast. In: Yeast Stress Responses (Hohmann, S. and Mager, W.H., Eds.), pp. 7-52. Springer-Verlag, Heldelberg.
    • (1997) In: Yeast Stress Responses , pp. 7-52
    • De Winde, J.H.1    Thevelein, J.M.2    Winderickx, J.3
  • 144
    • 0024971494 scopus 로고
    • Purification and characterization of neutral trehalase from the yeast ABYS1 mutant
    • App H., Holzer H. Purification and characterization of neutral trehalase from the yeast ABYS1 mutant. J. Biol. Chem. 264:1989;17583-17588.
    • (1989) J. Biol. Chem. , vol.264 , pp. 17583-17588
    • App, H.1    Holzer, H.2
  • 145
    • 0040342971 scopus 로고    scopus 로고
    • Neutral trehalase Nth1p of Saccharomyces cerevisiae encoded by the NTH1 gene is a multiple stress responsive protein
    • Zahringer H., Burgert M., Holzer H., Nwaka S. Neutral trehalase Nth1p of Saccharomyces cerevisiae encoded by the NTH1 gene is a multiple stress responsive protein. FEBS Lett. 412:1997;615-620.
    • (1997) FEBS Lett. , vol.412 , pp. 615-620
    • Zahringer, H.1    Burgert, M.2    Holzer, H.3    Nwaka, S.4
  • 146
    • 0029845539 scopus 로고    scopus 로고
    • Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: Novel variations of STRE-mediated transcription control?
    • Winderickx J., de Winde J.H., Crauwels M., Hino A., Hohmann S., Van Dijck P., Thevelein J.M. Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control? Mol. Gen. Genet. 252:1996;470-482.
    • (1996) Mol. Gen. Genet. , vol.252 , pp. 470-482
    • Winderickx, J.1    De Winde, J.H.2    Crauwels, M.3    Hino, A.4    Hohmann, S.5    Van Dijck, P.6    Thevelein, J.M.7
  • 147
    • 0033987099 scopus 로고    scopus 로고
    • Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: Questions, some answers and a model
    • Blomberg A. Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol. Lett. 182:2000;1-8.
    • (2000) FEMS Microbiol. Lett. , vol.182 , pp. 1-8
    • Blomberg, A.1
  • 148
    • 0028047402 scopus 로고
    • The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant
    • De Virgilio C., Hottiger T., Dominguez J., Boller T., Wiemken A. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur. J. Biochem. 219:1994;179-186.
    • (1994) Eur. J. Biochem. , vol.219 , pp. 179-186
    • De Virgilio, C.1    Hottiger, T.2    Dominguez, J.3    Boller, T.4    Wiemken, A.5
  • 149
    • 0030002467 scopus 로고    scopus 로고
    • Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: Potential commercial applications
    • Kim J., Alizadeh P., Harding T., Hefner-Gravink A., Klionsky D.J. Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications. Appl. Environ. Microbiol. 62:1996;1563-1569.
    • (1996) Appl. Environ. Microbiol. , vol.62 , pp. 1563-1569
    • Kim, J.1    Alizadeh, P.2    Harding, T.3    Hefner-Gravink, A.4    Klionsky, D.J.5
  • 150
    • 0029587537 scopus 로고
    • Evidence that the Saccharomyces cerevisiae CIF1 (GGS1/TPS1) gene modulates heat shock response positively
    • Hazell B.W., Nevalainen H., Attfield P.V. Evidence that the Saccharomyces cerevisiae CIF1 (GGS1/TPS1) gene modulates heat shock response positively. FEBS Lett. 377:1995;457-460.
    • (1995) FEBS Lett. , vol.377 , pp. 457-460
    • Hazell, B.W.1    Nevalainen, H.2    Attfield, P.V.3
  • 151
    • 0028912370 scopus 로고
    • Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae
    • Nwaka S., Kopp M., Holzer H. Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae. J. Biol. Chem. 270:1995;10193-10198.
    • (1995) J. Biol. Chem. , vol.270 , pp. 10193-10198
    • Nwaka, S.1    Kopp, M.2    Holzer, H.3
  • 152
    • 0028912106 scopus 로고
    • Phenotypic features of trehalase mutants in Saccharomyces cerevisiae
    • Nwaka S., Mechler B., Destruelle M., Holzer H. Phenotypic features of trehalase mutants in Saccharomyces cerevisiae. FEBS Lett. 360:1995;286-290.
    • (1995) FEBS Lett. , vol.360 , pp. 286-290
    • Nwaka, S.1    Mechler, B.2    Destruelle, M.3    Holzer, H.4
  • 153
    • 0032039542 scopus 로고    scopus 로고
    • Multiple effects of trehalose on protein folding in vitro and in vivo
    • Singer M.A., Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell. 1:1998;639-648.
    • (1998) Mol. Cell , vol.1 , pp. 639-648
    • Singer, M.A.1    Lindquist, S.2
  • 154
    • 0028054926 scopus 로고
    • The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro
    • Hottiger T., De Virgilio C., Hall M.N., Boller T., Wiemken A. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur. J. Biochem. 219:1994;187-193.
    • (1994) Eur. J. Biochem. , vol.219 , pp. 187-193
    • Hottiger, T.1    De Virgilio, C.2    Hall, M.N.3    Boller, T.4    Wiemken, A.5
  • 155
    • 0001248286 scopus 로고    scopus 로고
    • Oxidative stress response in yeast
    • (Hohmann, S. and Mager, W.H., Eds.), Springer-Verlag, Heldelberg
    • Santoro, N. and Thiele, D.J. (1997) Oxidative stress response in yeast. In: Yeast Stress Responses (Hohmann, S. and Mager, W.H., Eds.), pp. 171-211. Springer-Verlag, Heldelberg.
    • (1997) In: Yeast Stress Responses , pp. 171-211
    • Santoro, N.1    Thiele, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.