-
1
-
-
0023392267
-
A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains
-
Alani, E., L. Cao, and N. Kleckner. 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541-545.
-
(1987)
Genetics
, vol.116
, pp. 541-545
-
-
Alani, E.1
Cao, L.2
Kleckner, N.3
-
2
-
-
0023694311
-
Key features of heat shock regulatory elements
-
Amin, J., J. Ananthan, and R. Voellmy. 1988. Key features of heat shock regulatory elements. Mol. Cell. Biol. 8:3761-3769.
-
(1988)
Mol. Cell. Biol.
, vol.8
, pp. 3761-3769
-
-
Amin, J.1
Ananthan, J.2
Voellmy, R.3
-
3
-
-
0004265596
-
-
John Wiley & Sons, New York, N.Y.
-
Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Strahl (ed.). 1987. Current protocols in molecular biology. John Wiley & Sons, New York, N.Y.
-
(1987)
Current Protocols in Molecular Biology
-
-
Ausubel, F.M.1
Brent, R.2
Kingston, R.E.3
Moore, D.D.4
Seidman, J.G.5
Smith, J.A.6
Strahl, K.7
-
4
-
-
0028047311
-
Interactions between DNA-bound trimers of the yeast heat shock factor
-
Bonner, J. J., C. Ballou, and D. L. Fackenthal. 1994. Interactions between DNA-bound trimers of the yeast heat shock factor. Mol. Cell. Biol. 14:501-508.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 501-508
-
-
Bonner, J.J.1
Ballou, C.2
Fackenthal, D.L.3
-
5
-
-
0026526179
-
Temperature-dependent regulation of a heterologous transcription activation domain fused to yeast heat shock transcription factor
-
Bonner, J. J., S. Heyward, and D. L. Fackenthal. 1992. Temperature-dependent regulation of a heterologous transcription activation domain fused to yeast heat shock transcription factor. Mol. Cell. Biol. 12:1021-1030.
-
(1992)
Mol. Cell. Biol.
, vol.12
, pp. 1021-1030
-
-
Bonner, J.J.1
Heyward, S.2
Fackenthal, D.L.3
-
6
-
-
0025086425
-
Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae
-
Boorstein, W. R., and E. A. Craig. 1990. Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae. J. Biol. Chem. 265:18912-18921.
-
(1990)
J. Biol. Chem.
, vol.265
, pp. 18912-18921
-
-
Boorstein, W.R.1
Craig, E.A.2
-
7
-
-
0025351346
-
Transcriptional regulation of SSA3, an HSP70 gene from Saccharomyces cerevisiae
-
Boorstein, W. R., and E. A. Craig. 1990. Transcriptional regulation of SSA3, an HSP70 gene from Saccharomyces cerevisiae. Mol. Cell. Biol. 10:3262-3267.
-
(1990)
Mol. Cell. Biol.
, vol.10
, pp. 3262-3267
-
-
Boorstein, W.R.1
Craig, E.A.2
-
8
-
-
0024421221
-
hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures
-
Borkovich, K. A., F. W. Farrelly, D. B. Finkelstein, J. Taulien, and S. Lindquist. 1989. hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol. Cell. Biol. 9:3919-3930.
-
(1989)
Mol. Cell. Biol.
, vol.9
, pp. 3919-3930
-
-
Borkovich, K.A.1
Farrelly, F.W.2
Finkelstein, D.B.3
Taulien, J.4
Lindquist, S.5
-
9
-
-
0028076328
-
Yeast Skn7p functions in a eukaryotic two-component regulatory pathway
-
Brown, J. L., H. Bussey, and R. C. Stewart. 1994. Yeast Skn7p functions in a eukaryotic two-component regulatory pathway. EMBO J. 13:5186-5194.
-
(1994)
EMBO J.
, vol.13
, pp. 5186-5194
-
-
Brown, J.L.1
Bussey, H.2
Stewart, R.C.3
-
10
-
-
0027501822
-
SKN7, a yeast multicopy suppressor of a mutation affecting cell wall β-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors
-
Brown, J. L., S. North, and H. Bussey. 1993. SKN7, a yeast multicopy suppressor of a mutation affecting cell wall β-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors. J. Bacteriol. 175:6908-6915.
-
(1993)
J. Bacteriol.
, vol.175
, pp. 6908-6915
-
-
Brown, J.L.1
North, S.2
Bussey, H.3
-
11
-
-
0026088606
-
ACE2, an activator of yeast metallothionein expression which is homologous to SWI5
-
Butler, G., and D. J. Thiele. 1991. ACE2, an activator of yeast metallothionein expression which is homologous to SWI5. Mol. Cell. Biol. 11:476-485.
-
(1991)
Mol. Cell. Biol.
, vol.11
, pp. 476-485
-
-
Butler, G.1
Thiele, D.J.2
-
12
-
-
0021318779
-
Cloning and expression of a yeast copper metallothionein gene
-
Butt, T. R., E. Sternberg, J. Herd, and S. T. Crooke. 1984. Cloning and expression of a yeast copper metallothionein gene. Gene 27:23-33.
-
(1984)
Gene
, vol.27
, pp. 23-33
-
-
Butt, T.R.1
Sternberg, E.2
Herd, J.3
Crooke, S.T.4
-
13
-
-
0029763452
-
Transcriptional repression of the prointerleukin 1β gene by heat shock factor 1
-
Cahill, C. M., W. R. Waterman, Y. Xie, P. E. Auron, and S. K. Calderwood. 1996. Transcriptional repression of the prointerleukin 1β gene by heat shock factor 1. J. Biol. Chem. 271:24874-24879.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 24874-24879
-
-
Cahill, C.M.1
Waterman, W.R.2
Xie, Y.3
Auron, P.E.4
Calderwood, S.K.5
-
14
-
-
0027491654
-
Identification of the C-terminal activator domain in yeast heat shock factor: Independent control of transient and sustained transcriptional activity
-
Chen, Y., N. A. Barlev, O. Westergaard, and B. K. Jakobsen. 1993. Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity. EMBO J. 12:5007-5018.
-
(1993)
EMBO J.
, vol.12
, pp. 5007-5018
-
-
Chen, Y.1
Barlev, N.A.2
Westergaard, O.3
Jakobsen, B.K.4
-
15
-
-
0025606431
-
Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation
-
Clos, J., J. T. Westwood, P. B. Becker, S. Wilson, K. Lambert, and C. Wu. 1990. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63:1085-1097.
-
(1990)
Cell
, vol.63
, pp. 1085-1097
-
-
Clos, J.1
Westwood, J.T.2
Becker, P.B.3
Wilson, S.4
Lambert, K.5
Wu, C.6
-
16
-
-
0030043401
-
Activation of heat shock factor 1 DNa binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation
-
Cotto, J. J., M. Kline, and R. I. Morimoto. 1996. Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J. Biol. Chem. 271:3355-3358.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 3355-3358
-
-
Cotto, J.J.1
Kline, M.2
Morimoto, R.I.3
-
17
-
-
0031576350
-
The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor's trimerization domain
-
Drees, B. L., E. K. Grotkop, and H. C. M. Nelson. 1997. The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor's trimerization domain. J. Mol. Biol. 273:61-74.
-
(1997)
J. Mol. Biol.
, vol.273
, pp. 61-74
-
-
Drees, B.L.1
Grotkop, E.K.2
Nelson, H.C.M.3
-
18
-
-
0029026401
-
Multiple protein-DNA interactions over the yeast HSC82 heat shock gene promoter
-
Erkine, A. M., C. C. Adams, M. Gao, and D. S. Gross. 1995. Multiple protein-DNA interactions over the yeast HSC82 heat shock gene promoter. Nucleic Acids Res. 23:1822-1829.
-
(1995)
Nucleic Acids Res.
, vol.23
, pp. 1822-1829
-
-
Erkine, A.M.1
Adams, C.C.2
Gao, M.3
Gross, D.S.4
-
19
-
-
0028222344
-
Fine structure analyses of the Drosophila and Saccharomyces heat shock factor-heat shock element interactions
-
Fernandes, M., H. Xiao, and J. T. Lis. 1994. Fine structure analyses of the Drosophila and Saccharomyces heat shock factor-heat shock element interactions. Nucleic Acids Res. 22:167-173.
-
(1994)
Nucleic Acids Res.
, vol.22
, pp. 167-173
-
-
Fernandes, M.1
Xiao, H.2
Lis, J.T.3
-
20
-
-
0028352287
-
Yeast heat shock transcription factor contains a flexible linker between the DNA-binding and trimerization domains. Implications for DNA binding by trimeric proteins
-
Flick, K. E., L. Gonzalez, Jr., C. J. Harrison, and H. C. Nelson. 1994. Yeast heat shock transcription factor contains a flexible linker between the DNA-binding and trimerization domains. Implications for DNA binding by trimeric proteins. J. Biol. Chem. 269:12475-12481.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 12475-12481
-
-
Flick, K.E.1
Gonzalez Jr., L.2
Harrison, C.J.3
Nelson, H.C.4
-
21
-
-
0024849126
-
Domains of the SFL1 protein of yeasts are homologous to Myc oncoproteins of yeast heat-shock transcription factor
-
Fujita, A., Y. Kikuchi, S. Kuhara, Y. Misumi, S. Matsumoto, and H. Kobayashi. 1989. Domains of the SFL1 protein of yeasts are homologous to Myc oncoproteins of yeast heat-shock transcription factor. Gene 85:321-328.
-
(1989)
Gene
, vol.85
, pp. 321-328
-
-
Fujita, A.1
Kikuchi, Y.2
Kuhara, S.3
Misumi, Y.4
Matsumoto, S.5
Kobayashi, H.6
-
22
-
-
0026708394
-
Independent modes of activation by the p50 and p65 subunits of NF-κB
-
Fujita, T., G. Nolan, S. Ghosh, and D. Baltimore. 1992. Independent modes of activation by the p50 and p65 subunits of NF-κB. Genes Dev. 6:775-787.
-
(1992)
Genes Dev.
, vol.6
, pp. 775-787
-
-
Fujita, T.1
Nolan, G.2
Ghosh, S.3
Baltimore, D.4
-
23
-
-
0027439593
-
Heat shock factor is required for growth at normal temperatures in the fission yeast Schizosaccharomyces pombe
-
Gallo, G. J., H. Prentice, and R. E. Kingston. 1993. Heat shock factor is required for growth at normal temperatures in the fission yeast Schizosaccharomyces pombe. Mol. Cell. Biol. 13:749-761.
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 749-761
-
-
Gallo, G.J.1
Prentice, H.2
Kingston, R.E.3
-
24
-
-
0028911832
-
Dynamic protein-DNA architecture of a yeast heat shock promoter
-
Giardina, C., and J. T. Lis. 1995. Dynamic protein-DNA architecture of a yeast heat shock promoter. Mol. Cell. Biol. 15:2737-2744.
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 2737-2744
-
-
Giardina, C.1
Lis, J.T.2
-
25
-
-
0027270883
-
A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene
-
Gross, D. S., C. C. Adams, S. Lee, and B. Stentz. 1993. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene. EMBO J. 12:3931-3945.
-
(1993)
EMBO J.
, vol.12
, pp. 3931-3945
-
-
Gross, D.S.1
Adams, C.C.2
Lee, S.3
Stentz, B.4
-
26
-
-
0027958045
-
Crystal structure of the DNA binding domain of the heat shock transcription factor
-
Harrison, C. J., A. A. Bohm, and H. C. Nelson. 1994. Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263: 224-227.
-
(1994)
Science
, vol.263
, pp. 224-227
-
-
Harrison, C.J.1
Bohm, A.A.2
Nelson, H.C.3
-
27
-
-
0023701108
-
Constitutive binding of yeast heat shock factor to DNA in vivo
-
Jakobsen, B. K., and H. R. Pelham. 1988. Constitutive binding of yeast heat shock factor to DNA in vivo. Mol. Cell. Biol. 8:5040-5042.
-
(1988)
Mol. Cell. Biol.
, vol.8
, pp. 5040-5042
-
-
Jakobsen, B.K.1
Pelham, H.R.2
-
28
-
-
0025965063
-
A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor
-
Jakobsen, B. K., and H. R. B. Pelham. 1991. A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor. EMBO J. 10:369-375.
-
(1991)
EMBO J.
, vol.10
, pp. 369-375
-
-
Jakobsen, B.K.1
Pelham, H.R.B.2
-
29
-
-
0030067833
-
Autoactivation by a Candida glabrata copper metalloregulatory transcription factor requires critical minor groove interactions
-
Koch, K. A., and D. J. Thiele. 1996. Autoactivation by a Candida glabrata copper metalloregulatory transcription factor requires critical minor groove interactions. Mol. Cell. Biol. 16:724-734.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 724-734
-
-
Koch, K.A.1
Thiele, D.J.2
-
30
-
-
0027960541
-
Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity
-
Kroeger, P. E., and R. I. Morimoto. 1994. Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Mol. Cell. Biol. 14:7592-7603.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 7592-7603
-
-
Kroeger, P.E.1
Morimoto, R.I.2
-
31
-
-
0027195230
-
Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element
-
Kroeger, P. E., K. D. Sarge, and R. I. Morimoto. 1993. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Mol. Cell. Biol. 13:3370-3383.
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 3370-3383
-
-
Kroeger, P.E.1
Sarge, K.D.2
Morimoto, R.I.3
-
32
-
-
0030941339
-
Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway
-
Labbe, S., Z. Zhu, and D. J. Thiele. 1997. Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J. Biol. Chem. 272:15951-15958.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 15951-15958
-
-
Labbe, S.1
Zhu, Z.2
Thiele, D.J.3
-
33
-
-
0030966628
-
Overexpression of HSF2-β inhibits hemin-induced heat shock gene expression and erythroid differentiation in K562 cells
-
Leppa, S., L. Pirkkala, H. Saarento, K. D. Sarge, and L. Sistonen. 1997. Overexpression of HSF2-β inhibits hemin-induced heat shock gene expression and erythroid differentiation in K562 cells. J. Biol. Chem. 272:15293-15298.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 15293-15298
-
-
Leppa, S.1
Pirkkala, L.2
Saarento, H.3
Sarge, K.D.4
Sistonen, L.5
-
34
-
-
0026501570
-
A negative retinoic acid response element in the rat oxytocin promoter restricts transcriptional stimulation by heterologous transactivation domains
-
Lipkin, S. M., C. A. Nelson, C. K. Glass, and M. G. Rosenfeld. 1992. A negative retinoic acid response element in the rat oxytocin promoter restricts transcriptional stimulation by heterologous transactivation domains. Proc. Natl. Acad. Sci. USA 89:1209-1213.
-
(1992)
Proc. Natl. Acad. Sci. USA
, vol.89
, pp. 1209-1213
-
-
Lipkin, S.M.1
Nelson, C.A.2
Glass, C.K.3
Rosenfeld, M.G.4
-
35
-
-
0030728446
-
Conservation of a stress response: Human heat shock transcription factors functionally substitute for yeast HSF
-
Liu, X.-D., P. C. C. Liu, N. Santoro, and D. J. Thiele. 1997. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF. EMBO J. 16:6466-6477.
-
(1997)
EMBO J.
, vol.16
, pp. 6466-6477
-
-
Liu, X.-D.1
Liu, P.C.C.2
Santoro, N.3
Thiele, D.J.4
-
36
-
-
0029664413
-
Oxidative stress induces heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription
-
Liu, X.-D., and D. J. Thiele. 1996. Oxidative stress induces heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription. Genes Dev. 10:592-603.
-
(1996)
Genes Dev.
, vol.10
, pp. 592-603
-
-
Liu, X.-D.1
Thiele, D.J.2
-
37
-
-
0031048280
-
The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae
-
Morgan, B. A., G. R. Banks, W. M. Toone, D. Raitt, S. Kuge, and L. H. Johnston. 1997. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 16:1035-1044.
-
(1997)
EMBO J.
, vol.16
, pp. 1035-1044
-
-
Morgan, B.A.1
Banks, G.R.2
Toone, W.M.3
Raitt, D.4
Kuge, S.5
Johnston, L.H.6
-
38
-
-
0003720391
-
-
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
-
Moritomo, R. I., A. Tissieres, and C. Georgopoulos (ed.). 1994. The biology of heat shock proteins and chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
-
(1994)
The Biology of Heat Shock Proteins and Chaperones
-
-
Moritomo, R.I.1
Tissieres, A.2
Georgopoulos, C.3
-
39
-
-
0023034916
-
Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions
-
Myers, A. M., A. Tzagoloff, D. M. Kinney, and C. J. Lusty. 1986. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45:299-310.
-
(1986)
Gene
, vol.45
, pp. 299-310
-
-
Myers, A.M.1
Tzagoloff, A.2
Kinney, D.M.3
Lusty, C.J.4
-
40
-
-
0027406535
-
Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway
-
Nakai, A., and R. I. Morimoto. 1993. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell. Biol. 13:1983-1997.
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 1983-1997
-
-
Nakai, A.1
Morimoto, R.I.2
-
41
-
-
0031032550
-
HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator
-
Nakai, A., M. Tanabe, Y. Kawazoe, J. Inazawa, R. I. Morimoto, and K. Nagata. 1997. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell. Biol. 17:469-481.
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 469-481
-
-
Nakai, A.1
Tanabe, M.2
Kawazoe, Y.3
Inazawa, J.4
Morimoto, R.I.5
Nagata, K.6
-
42
-
-
0025122831
-
The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions
-
Nieto-Sotelo, J., G. Wiederrecht, A. Okuda, and C. S. Parker. 1990. The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 62:807-817.
-
(1990)
Cell
, vol.62
, pp. 807-817
-
-
Nieto-Sotelo, J.1
Wiederrecht, G.2
Okuda, A.3
Parker, C.S.4
-
43
-
-
0023306058
-
Expression of heat shock genes in homologous and heterologous systems
-
Nover, L. 1987. Expression of heat shock genes in homologous and heterologous systems. Enzyme Microb. Technol. 9:129-192.
-
(1987)
Enzyme Microb. Technol.
, vol.9
, pp. 129-192
-
-
Nover, L.1
-
44
-
-
0025864313
-
Molecular cloning and expression of a human heat shock factor. HSF1
-
Rabindran, S. K., G. Giorgi, J. Clos, and C. Wu. 1991. Molecular cloning and expression of a human heat shock factor. HSF1. Proc. Natl. Acad. Sci. USA 88:6906-6910.
-
(1991)
Proc. Natl. Acad. Sci. USA
, vol.88
, pp. 6906-6910
-
-
Rabindran, S.K.1
Giorgi, G.2
Clos, J.3
Wu, C.4
-
45
-
-
0027452754
-
Regulation of heat shock factor trimer formation: Role of a conserved leucine zipper
-
Rabindran, S. K., R. I. Haronn, J. Clos, J. Wisniewski, and C. Wu. 1993. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259:230-234.
-
(1993)
Science
, vol.259
, pp. 230-234
-
-
Rabindran, S.K.1
Haronn, R.I.2
Clos, J.3
Wisniewski, J.4
Wu, C.5
-
46
-
-
0030949494
-
Function and regulation of heat shock factor 2 during mouse embryogenesis
-
Rallu, M., M. Loones, Y. Lallemand, R. Morimoto, M. Morange, and V. Mezger. 1997. Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc. Natl. Acad. Sci. USA 94:2392-2397.
-
(1997)
Proc. Natl. Acad. Sci. USA
, vol.94
, pp. 2392-2397
-
-
Rallu, M.1
Loones, M.2
Lallemand, Y.3
Morimoto, R.4
Morange, M.5
Mezger, V.6
-
47
-
-
0344696389
-
Analysis of sequence-specific DNA binding proteins
-
T. E. Creighton (ed.), IRL Press, New York, N.Y.
-
Rhodes, D. 1989. Analysis of sequence-specific DNA binding proteins, p. 177-198. In T. E. Creighton (ed.), Protein function: a practical approach. IRL Press, New York, N.Y.
-
(1989)
Protein Function: A Practical Approach
, pp. 177-198
-
-
Rhodes, D.1
-
48
-
-
0027461364
-
Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress
-
Sarge, K. D., S. P. Murphy, and R. I. Morimoto. 1993. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13:1392-1407.
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 1392-1407
-
-
Sarge, K.D.1
Murphy, S.P.2
Morimoto, R.I.3
-
49
-
-
0028241317
-
Expression of heat shock factor 2 in mouse testis: Potential role as a regulator of heat-shock protein gene expression during spermatogenesis
-
Sarge, K. D., O. K. Parke-Sarge, J. D. Kirby, K. E. Mayo, and R. I. Morimoto. 1994. Expression of heat shock factor 2 in mouse testis: potential role as a regulator of heat-shock protein gene expression during spermatogenesis. Biol. Reprod. 50:1334-1343.
-
(1994)
Biol. Reprod.
, vol.50
, pp. 1334-1343
-
-
Sarge, K.D.1
Parke-Sarge, O.K.2
Kirby, J.D.3
Mayo, K.E.4
Morimoto, R.I.5
-
50
-
-
0025989349
-
Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability
-
Sarge, K. D., V. Zimarino, K. Holm, C. Wu, and R. I. Morimoto. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 5:1902-1911.
-
(1991)
Genes Dev.
, vol.5
, pp. 1902-1911
-
-
Sarge, K.D.1
Zimarino, V.2
Holm, K.3
Wu, C.4
Morimoto, R.I.5
-
51
-
-
0025686194
-
Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF
-
Scharf, K. D., S. Rose, W. Zott, F. Schoffl, L. Nover, and F. Schott. 1990. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J. 9:4495-4501.
-
(1990)
EMBO J.
, vol.9
, pp. 4495-4501
-
-
Scharf, K.D.1
Rose, S.2
Zott, W.3
Schoffl, F.4
Nover, L.5
Schott, F.6
-
52
-
-
0024293495
-
Identification of a novel lymphoid specific octamer binding protein (OTF-2B) by proteolytic clipping bandshift assay (PCBA)
-
Schreiber, E. P. Matthias, M. Muller, and W. Schaffner. 1988. Identification of a novel lymphoid specific octamer binding protein (OTF-2B) by proteolytic clipping bandshift assay (PCBA). EMBO J. 7:4221-4229.
-
(1988)
EMBO J.
, vol.7
, pp. 4221-4229
-
-
Schreiber1
Matthias, E.P.2
Muller, M.3
Schaffner, W.4
-
53
-
-
0025768725
-
Isolation of a cDNA for HSF2: Evidence for two heat shock factor genes in humans
-
Schuetz, T. J., G. J. Gallo, L. Sheldon, P. Tempst, and R. E. Kingston. 1991. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 88:6911-6915.
-
(1991)
Proc. Natl. Acad. Sci. USA
, vol.88
, pp. 6911-6915
-
-
Schuetz, T.J.1
Gallo, G.J.2
Sheldon, L.3
Tempst, P.4
Kingston, R.E.5
-
54
-
-
0026063552
-
Heat shock transcription factor activates transcription of the yeast metallothionein gene
-
Silar, P., G. Butler, and D. J. Thiele. 1991. Heat shock transcription factor activates transcription of the yeast metallothionein gene. Mol. Cell. Biol. 11: 1232-1238.
-
(1991)
Mol. Cell. Biol.
, vol.11
, pp. 1232-1238
-
-
Silar, P.1
Butler, G.2
Thiele, D.J.3
-
55
-
-
0026746491
-
Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells
-
Sistonen, L., K. D. Sarge, B. Phillips, K. Abravaya, and R. I. Morimoto. 1992. Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol. Cell. Biol. 12:4104-4111.
-
(1992)
Mol. Cell. Biol.
, vol.12
, pp. 4104-4111
-
-
Sistonen, L.1
Sarge, K.D.2
Phillips, B.3
Abravaya, K.4
Morimoto, R.I.5
-
56
-
-
0024989583
-
Yeast heat shock factor contains separable transient and sustained response transcriptional activators
-
Sorger, P. K. 1990. Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62:793-805.
-
(1990)
Cell
, vol.62
, pp. 793-805
-
-
Sorger, P.K.1
-
57
-
-
0001155811
-
Identification and purification of sequence-specific DNA-binding proteins
-
T. E. Creighton (ed.), IRL Press, New York, N.Y.
-
Sorger, P. K., G. Ammerer, and D. Shore. 1989. Identification and purification of sequence-specific DNA-binding proteins, p. 199-224. In T. E. Creighton (ed.), Protein function: a practical approach. IRL Press, New York, N.Y.
-
(1989)
Protein Function: A Practical Approach
, pp. 199-224
-
-
Sorger, P.K.1
Ammerer, G.2
Shore, D.3
-
58
-
-
0024852809
-
Trimerization of a yeast transcriptional activator via a coiled-coil motif
-
Sorger, P. K., and H. C. M. Nelson. 1989. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59:807-813.
-
(1989)
Cell
, vol.59
, pp. 807-813
-
-
Sorger, P.K.1
Nelson, H.C.M.2
-
59
-
-
0023427519
-
Purification and characterization of a heat-shock element binding protein from yeast
-
Sorger, P. K., and H. R. Pelham. 1987. Purification and characterization of a heat-shock element binding protein from yeast. EMBO J. 6:3035-3041.
-
(1987)
EMBO J.
, vol.6
, pp. 3035-3041
-
-
Sorger, P.K.1
Pelham, H.R.2
-
60
-
-
0024282785
-
Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation
-
Sorger, P. K., and H. R. B. Pelham. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855-864.
-
(1988)
Cell
, vol.54
, pp. 855-864
-
-
Sorger, P.K.1
Pelham, H.R.B.2
-
61
-
-
0029894563
-
Intracellular receptors use a common mechanism to interpret signaling information at response elements
-
Starr, D. B., W. Matsui, J. R. Thomas, and K. R. Yamamoto. 1996. Intracellular receptors use a common mechanism to interpret signaling information at response elements. Genes Dev. 10:1271-1283.
-
(1996)
Genes Dev.
, vol.10
, pp. 1271-1283
-
-
Starr, D.B.1
Matsui, W.2
Thomas, J.R.3
Yamamoto, K.R.4
-
62
-
-
0028564754
-
Application of the gel shift assay to study the affinity and specificity of anti-DNA autoantibodies
-
Stevens, S. Y., P. C. Swanson, and G. D. Glick. 1994. Application of the gel shift assay to study the affinity and specificity of anti-DNA autoantibodies. J. Immunol. Methods 177:185-190.
-
(1994)
J. Immunol. Methods
, vol.177
, pp. 185-190
-
-
Stevens, S.Y.1
Swanson, P.C.2
Glick, G.D.3
-
63
-
-
0027940568
-
Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways
-
Tamai, K. T., X. Liu, P. Silar, T. Sosinowski, and D. J. Thiele. 1994. Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol. Cell. Biol. 14:8155-8165.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 8155-8165
-
-
Tamai, K.T.1
Liu, X.2
Silar, P.3
Sosinowski, T.4
Thiele, D.J.5
-
64
-
-
0025363427
-
DNA binding-induced conformational change of the yeast transcriptional activator PRTF
-
Tan, S., and T. J. Richmond. 1990. DNA binding-induced conformational change of the yeast transcriptional activator PRTF. Cell 62:367-377.
-
(1990)
Cell
, vol.62
, pp. 367-377
-
-
Tan, S.1
Richmond, T.J.2
-
65
-
-
0022129510
-
Sequences required for in vitro transcriptional activation of a Drosophila hsp 70 gene
-
Topol, J., D. M. Ruden, and C. S. Parker. 1985. Sequences required for in vitro transcriptional activation of a Drosophila hsp 70 gene. Cell 42:527-537.
-
(1985)
Cell
, vol.42
, pp. 527-537
-
-
Topol, J.1
Ruden, D.M.2
Parker, C.S.3
-
66
-
-
0028500990
-
Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor
-
Vuister, G. W., S. J. Kim, A. Orosz, J. Marquardt, C. Wu, and A. Bax. 1994. Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor. Nat. Struct. Biol. 1:605-614.
-
(1994)
Nat. Struct. Biol.
, vol.1
, pp. 605-614
-
-
Vuister, G.W.1
Kim, S.J.2
Orosz, A.3
Marquardt, J.4
Wu, C.5
Bax, A.6
-
67
-
-
0025955517
-
Stress-induced oligomerization and chromosomal relocalization of heat-shock factor
-
Westwood, J. T., J. Clos, and C. Wu. 1991. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353:822-827.
-
(1991)
Nature
, vol.353
, pp. 822-827
-
-
Westwood, J.T.1
Clos, J.2
Wu, C.3
-
68
-
-
0027159173
-
Activation of Drosophila heat shock factor: Conformational change associated with a monomer-to-trimer transition
-
Westwood, J. T., and C. Wu. 1993. Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol. Cell. Biol. 13:3481-3486.
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 3481-3486
-
-
Westwood, J.T.1
Wu, C.2
-
69
-
-
0024282788
-
Isolation of the gene encoding the S. cerevisiae heat shock transcription factor
-
Wiederrecht, G., D. Seto, and C. S. Parker. 1988. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54:841-853.
-
(1988)
Cell
, vol.54
, pp. 841-853
-
-
Wiederrecht, G.1
Seto, D.2
Parker, C.S.3
-
70
-
-
0029564954
-
Heat shock transcription factors: Structure and regulation
-
Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11:441-469.
-
(1995)
Annu. Rev. Cell Dev. Biol.
, vol.11
, pp. 441-469
-
-
Wu, C.1
-
71
-
-
0023863121
-
Germline transformation used to define key features of heat-shock response elements
-
Xiao, H., and J. T. Lis. 1988. Germline transformation used to define key features of heat-shock response elements. Science 239:1139-1142.
-
(1988)
Science
, vol.239
, pp. 1139-1142
-
-
Xiao, H.1
Lis, J.T.2
-
72
-
-
0025965278
-
Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit
-
Xiao, H., O. Perisic, and J. T. Lis. 1991. Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell 64:585-593.
-
(1991)
Cell
, vol.64
, pp. 585-593
-
-
Xiao, H.1
Perisic, O.2
Lis, J.T.3
-
73
-
-
0027328535
-
Saccharomyces cerevisiae HSP70 heat shock elements are functionally distinct
-
Young, M. R., and E. A. Craig. 1993. Saccharomyces cerevisiae HSP70 heat shock elements are functionally distinct. Mol. Cell. Biol. 13:5637-5646.
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 5637-5646
-
-
Young, M.R.1
Craig, E.A.2
-
74
-
-
0029055176
-
Multiple layers of regulation of human heat shock transcription factor 1
-
Zuo, J., D. Rungger, and R. Voellmy. 1995. Multiple layers of regulation of human heat shock transcription factor 1. Mol. Cell. Biol. 15:4319-4330.
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 4319-4330
-
-
Zuo, J.1
Rungger, D.2
Voellmy, R.3
|