메뉴 건너뛰기




Volumn , Issue , 2014, Pages 257-291

The Why and How of Nonnegative Matrix Factorization

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85142053618     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b17558-15     Document Type: Chapter
Times cited : (285)

References (113)
  • 1
    • 84880258085 scopus 로고    scopus 로고
    • Hyperspectral data geometry based estimation of number of endmembers using p-norm based pure pixel identification
    • A. Ambikapathi, T.-H. Chan, C.-Y. Chi, and K. Keizer. Hyperspectral data geometry based estimation of number of endmembers using p-norm based pure pixel identification. IEEE Trans. on Geoscience and Remote Sensing, 51(5):2753–2769, 2013.
    • (2013) IEEE Trans. on Geoscience and Remote Sensing , vol.51 , Issue.5 , pp. 2753-2769
    • Ambikapathi, A.1    Chan, T.-H.2    Chi, C.-Y.3    Keizer, K.4
  • 5
    • 78650045636 scopus 로고    scopus 로고
    • Stability analysis of multiplicative update algorithms and application to nonnegative matrix factorization
    • R. Badeau, N. Bertin, and E. Vincent. Stability analysis of multiplicative update algorithms and application to nonnegative matrix factorization. IEEE Trans. on Neural Networks, 21(12):1869–1881, 2010.
    • (2010) IEEE Trans. on Neural Networks , vol.21 , Issue.12 , pp. 1869-1881
    • Badeau, R.1    Bertin, N.2    Vincent, E.3
  • 10
    • 84861170800 scopus 로고    scopus 로고
    • Probabilistic topic models
    • D.M. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012.
    • (2012) Communications of the ACM , vol.55 , Issue.4 , pp. 77-84
    • Blei, D.M.1
  • 11
    • 36749071484 scopus 로고    scopus 로고
    • SVD based initialization: A head start for nonnegative matrix factorization
    • C. Boutsidis and E. Gallopoulos. SVD based initialization: A head start for nonnegative matrix factorization. Pattern Recognition, 41:1350– 1362, 2008.
    • (2008) Pattern Recognition, 41:1350– , pp. 1362
    • Boutsidis, C.1    Gallopoulos, E.2
  • 14
    • 0004050741 scopus 로고    scopus 로고
    • Multi-Way Analysis in the Food Industry: Models, Algorithms, and Applications. PhD thesis
    • R. Bro. Multi-Way Analysis in the Food Industry: Models, Algorithms, and Applications. PhD thesis, University of Copenhagen, 1998. http://curis.ku.dk/ws/files/13035961/Rasmus_Bro.pdf.
    • (1998) University of Copenhagen
    • Bro, R.1
  • 15
    • 0000673625 scopus 로고
    • Linear least squares solutions by householder transformations
    • P. Businger and G.H. Golub. Linear least squares solutions by householder transformations. Numerische Mathematik, 7:269–276, 1965.
    • (1965) Numerische Mathematik , vol.7 , pp. 269-276
    • Businger, P.1    Golub, G.H.2
  • 17
    • 77953135649 scopus 로고    scopus 로고
    • Probability matrices, non-negative rank, and parameterization of mixture models
    • E. Carlini and F. Rapallo. Probability matrices, non-negative rank, and parameterization of mixture models. Linear Algebra and its Applications, 433:424–432, 2010.
    • (2010) Linear Algebra and Its Applications , vol.433 , pp. 424-432
    • Carlini, E.1    Rapallo, F.2
  • 18
    • 84888641788 scopus 로고    scopus 로고
    • Subtractive clustering for seeding non-negative matrix factorizations
    • G. Casalino, N. Del Buono, and C. Mencar. Subtractive clustering for seeding non-negative matrix factorizations. Information Sciences, (257):369–387, 2013.
    • (2013) Information Sciences, (257) , pp. 369-387
    • Casalino, G.1    Del Buono, N.2    Mencar, C.3
  • 19
    • 78649910530 scopus 로고    scopus 로고
    • On selecting a maximum volume submatrix of a matrix and related problems
    • A. Çivril and M. Magdon-Ismail. On selecting a maximum volume submatrix of a matrix and related problems. Theoretical Computer Science, 410(47-49):4801–4811, 2009.
    • (2009) Theoretical Computer Science , vol.410 , Issue.47-49 , pp. 4801-4811
    • Çivril, A.1    Magdon-Ismail, M.2
  • 20
    • 84872617323 scopus 로고    scopus 로고
    • Exponential inapproximability of selecting a maximum volume sub-matrix
    • A. Çivril and M. Magdon-Ismail. Exponential inapproximability of selecting a maximum volume sub-matrix. Algorithmica, 65(1):159–176, 2013.
    • (2013) Algorithmica , vol.65 , Issue.1 , pp. 159-176
    • Çivril, A.1    Magdon-Ismail, M.2
  • 22
    • 54749083549 scopus 로고    scopus 로고
    • A convex analysis framework for blind separation of non-negative sources
    • T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang. A convex analysis framework for blind separation of non-negative sources. IEEE Trans. on Signal Processing, 56(10):5120–5134, 2008.
    • (2008) IEEE Trans. on Signal Processing , vol.56 , Issue.10 , pp. 5120-5134
    • Chan, T.-H.1    Ma, W.-K.2    Chi, C.-Y.3    Wang, Y.4
  • 23
    • 84871551012 scopus 로고    scopus 로고
    • On tensors, sparsity, and nonnegative factorizations
    • E.C. Chi and T.G. Kolda. On tensors, sparsity, and nonnegative factorizations. SIAM J. on Matrix Analysis and Applications, 33(4):1272– 1299, 2012.
    • (2012) SIAM J. on Matrix Analysis and Applications , vol.33 , Issue.4 , pp. 1272-1299
    • Chi, E.C.1    Kolda, T.G.2
  • 25
    • 74449093261 scopus 로고    scopus 로고
    • Fast local algorithms for large scale Nonnegative Matrix and Tensor Factorizations. IEICE Trans. on Fundamentals of Electronics, Vol
    • A. Cichocki and A.H. Phan. Fast local algorithms for large scale Nonnegative Matrix and Tensor Factorizations. IEICE Trans. on Fundamentals of Electronics, Vol. E92-A No.3:708–721, 2009.
    • (2009) E92-A , vol.3 , pp. 708-721
    • Cichocki, A.1    Phan, A.H.2
  • 28
    • 84878762322 scopus 로고    scopus 로고
    • Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation
    • A. Cichocki, R. Zdunek, A.H. Phan, and S.-I. Amari. Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley-Blackwell, 2009.
    • (2009) Wiley-Blackwell
    • Cichocki, A.1    Zdunek, R.2    Phan, A.H.3    Amari, S.-I.4
  • 29
    • 0028416938 scopus 로고
    • Independent component analysis: A new concept?
    • P. Comon. Independent component analysis: A new concept? Signal Processing, 36:287–314, 1994.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 32
    • 34548514458 scopus 로고    scopus 로고
    • A Direct Formulation for Sparse PCA Using Semidefinite Programming
    • A. d’Aspremont, L. El Ghaoui, M.I. Jordan, and G.R.G. Lanckriet. A Direct Formulation for Sparse PCA Using Semidefinite Programming. SIAM Review, 49(3):434–448, 2007.
    • (2007) SIAM Review , vol.49 , Issue.3 , pp. 434-448
    • D’Aspremont, A.1    El Ghaoui, L.2    Jordan, M.I.3    Lanckriet, G.R.G.4
  • 33
    • 0022736170 scopus 로고
    • An iterative image space reconstruction algorithm suitable for volume ECT
    • M.E. Daube-Witherspoon and G. Muehllehner. An iterative image space reconstruction algorithm suitable for volume ECT. IEEE Trans. on Medical Imaging, 5:61–66, 1986.
    • (1986) IEEE Trans. on Medical Imaging , vol.5 , pp. 61-66
    • Daube-Witherspoon, M.E.1    Muehllehner, G.2
  • 34
    • 48249151183 scopus 로고    scopus 로고
    • Nonnegative Matrix Factorization: An Analytical and Interpretive Tool in Computational Biology. PLoS Computational Biology
    • K. Devarajan. Nonnegative Matrix Factorization: An Analytical and Interpretive Tool in Computational Biology. PLoS Computational Biology, 4(7):e1000029, 2008.
    • (2008)
    • Devarajan, K.1
  • 37
    • 41249089920 scopus 로고    scopus 로고
    • On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing
    • C. Ding, T. Li, and W. Peng. On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing. Computational Statistics & Data Analysis, 52(8):3913–3927, 2008.
    • (2008) Computational Statistics & Data Analysis , vol.52 , Issue.8 , pp. 3913-3927
    • Ding, C.1    Li, T.2    Peng, W.3
  • 41
    • 84862519707 scopus 로고    scopus 로고
    • A convex model for nonnegative matrix factorization and dimensionality reduction on physical space
    • E. Esser, M. Moller, S. Osher, G. Sapiro, and J. Xin. A convex model for nonnegative matrix factorization and dimensionality reduction on physical space. IEEE Trans. on Image Processing, 21(7):3239–3252, 2012.
    • (2012) IEEE Trans. on Image Processing , vol.21 , Issue.7 , pp. 3239-3252
    • Esser, E.1    Moller, M.2    Osher, S.3    Sapiro, G.4    Xin, J.5
  • 42
    • 63249085556 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis
    • C. Févotte, N. Bertin, and J.-L. Durrieu. Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis. Neural Computation, 21(3):793–830, 2009.
    • (2009) Neural Computation , vol.21 , Issue.3 , pp. 793-830
    • Févotte, C.1    Bertin, N.2    Durrieu, J.-L.3
  • 43
    • 84867204452 scopus 로고    scopus 로고
    • Combinatorial bounds on nonnegative rank and extended formulations
    • S. Fiorini, V. Kaibel, K. Pashkovich, and D.O. Theis. Combinatorial bounds on nonnegative rank and extended formulations. Discrete Mathematics, 313(1):67–83, 2013.
    • (2013) Discrete Mathematics , vol.313 , Issue.1 , pp. 67-83
    • Fiorini, S.1    Kaibel, V.2    Pashkovich, K.3    Theis, D.O.4
  • 46
    • 85142023009 scopus 로고    scopus 로고
    • Provable Algorithms for Machine Learning Problems. PhD thesis
    • R. Ge. Provable Algorithms for Machine Learning Problems. PhD thesis, Princeton University, 2013. http://dataspace.princeton.edu/jspui/bitstream/88435/dsp019k41zd62n/1/Ge_princeton_0181D_10819.pdf.
    • (2013) Princeton University
    • Ge, R.1
  • 48
    • 84870868704 scopus 로고    scopus 로고
    • Sparse and unique nonnegative matrix factorization through data preprocessing
    • N. Gillis. Sparse and unique nonnegative matrix factorization through data preprocessing. Journal of Machine Learning Research, 13(Nov):3349–3386, 2012.
    • (2012) Journal of Machine Learning Research , vol.13 , Issue.Nov , pp. 3349-3386
    • Gillis, N.1
  • 49
    • 84887361620 scopus 로고    scopus 로고
    • Robustness analysis of Hottopixx, a linear programming model for factoring nonnegative matrices
    • N. Gillis. Robustness analysis of Hottopixx, a linear programming model for factoring nonnegative matrices. SIAM J. on Matrix Analysis and Applications, 34(3):1189–1212, 2013.
    • (2013) SIAM J. on Matrix Analysis and Applications , vol.34 , Issue.3 , pp. 1189-1212
    • Gillis, N.1
  • 51
    • 74449083451 scopus 로고    scopus 로고
    • Using underapproximations for sparse nonnegative matrix factorization
    • N. Gillis and F. Glineur. Using underapproximations for sparse nonnegative matrix factorization. Pattern Recognition, 43(4):1676–1687, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.4 , pp. 1676-1687
    • Gillis, N.1    Glineur, F.2
  • 52
    • 84861111031 scopus 로고    scopus 로고
    • Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix factorization
    • N. Gillis and F. Glineur. Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix factorization. Neural Computation, 24(4):1085–1105, 2012.
    • (2012) Neural Computation , vol.24 , Issue.4 , pp. 1085-1105
    • Gillis, N.1    Glineur, F.2
  • 53
    • 84865687533 scopus 로고    scopus 로고
    • On the geometric interpretation of the nonnegative rank
    • N. Gillis and F. Glineur. On the geometric interpretation of the nonnegative rank. Linear Algebra and its Applications, 437(11):2685–2712, 2012.
    • (2012) Linear Algebra and Its Applications , vol.437 , Issue.11 , pp. 2685-2712
    • Gillis, N.1    Glineur, F.2
  • 54
    • 84901625045 scopus 로고    scopus 로고
    • Robust near-separable nonnegative matrix factorization using linear optimization
    • to appear
    • N. Gillis and R. Luce. Robust near-separable nonnegative matrix factorization using linear optimization. Journal of Machine Learning Research, 2014. to appear.
    • (2014) Journal of Machine Learning Research
    • Gillis, N.1    Luce, R.2
  • 55
    • 84897475291 scopus 로고    scopus 로고
    • Fast and robust recursive algorithms for separable nonnegative matrix factorization. IEEE Trans. Pattern Anal. Mach
    • N. Gillis and S.A. Vavasis. Fast and robust recursive algorithms for separable nonnegative matrix factorization. IEEE Trans. Pattern Anal. Mach. Intell., 2013. doi:10.1109/TPAMI.2013.226.
    • (2013) Intell.
    • Gillis, N.1    Vavasis, S.A.2
  • 59
    • 0033904057 scopus 로고    scopus 로고
    • On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
    • L. Grippo and M. Sciandrone. On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Operations Research Letters, 26:127–136, 2000.
    • (2000) Operations Research Letters , vol.26 , pp. 127-136
    • Grippo, L.1    Sciandrone, M.2
  • 60
    • 84861164231 scopus 로고    scopus 로고
    • NeNMF: An optimal gradient method for nonnegative matrix factorization
    • N. Guan, D. Tao, Z. Luo, and B. Yuan. NeNMF: an optimal gradient method for nonnegative matrix factorization. IEEE Trans. on Signal Processing, 60(6):2882–2898, 2012.
    • (2012) IEEE Trans. on Signal Processing , vol.60 , Issue.6 , pp. 2882-2898
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 62
    • 77956285552 scopus 로고    scopus 로고
    • On the rate of convergence of the image space reconstruction algorithm
    • J. Han, L. Han, M. Neumann, and U. Prasad. On the rate of convergence of the image space reconstruction algorithm. Operators and Matrices, 3(1):41–58, 2009.
    • (2009) Operators and Matrices , vol.3 , Issue.1 , pp. 41-58
    • Han, J.1    Han, L.2    Neumann, M.3    Prasad, U.4
  • 64
    • 84900510076 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with sparseness constraints
    • P.O. Hoyer. Nonnegative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5:1457–1469, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 66
    • 84890916116 scopus 로고    scopus 로고
    • Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition
    • K. Huang, N.D. Sidiropoulos, and A. Swami. Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition. IEEE Trans. on Signal Processing, 62(1):211–224, 2014.
    • (2014) IEEE Trans. on Signal Processing , vol.62 , Issue.1 , pp. 211-224
    • Huang, K.1    Sidiropoulos, N.D.2    Swami, A.3
  • 68
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • S. Jia and Y. Qian. Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. on Geoscience and Remote Sensing, 47(1):161–173, 2009.
    • (2009) IEEE Trans. on Geoscience and Remote Sensing , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 69
    • 84862597962 scopus 로고    scopus 로고
    • Extended Formulations in Combinatorial Optimization
    • V. Kaibel. Extended Formulations in Combinatorial Optimization. Optima, 85:2–7, 2011.
    • (2011) Optima , vol.85 , pp. 2-7
    • Kaibel, V.1
  • 72
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • H. Kim and H. Park. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics, 23(12):1495–1502, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 73
    • 67349093319 scopus 로고    scopus 로고
    • Non-negative Matrix Factorization Based on Alternating Non-negativity Constrained Least Squares and Active Set Method
    • H. Kim and H. Park. Non-negative Matrix Factorization Based on Alternating Non-negativity Constrained Least Squares and Active Set Method. SIAM J. on Matrix Analysis and Applications, 30(2):713–730, 2008.
    • (2008) SIAM J. on Matrix Analysis and Applications , vol.30 , Issue.2 , pp. 713-730
    • Kim, H.1    Park, H.2
  • 74
    • 84895057098 scopus 로고    scopus 로고
    • Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework
    • 10.1007/s10898- 013-0035-4
    • J. Kim, Y. He, and H. Park. Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework. Journal of Global Optimization, 2013. doi:10.1007/s10898- 013-0035-4.
    • (2013) Journal of Global Optimization
    • Kim, J.1    He, Y.2    Park, H.3
  • 75
    • 84863012243 scopus 로고    scopus 로고
    • Fast nonnegative matrix factorization: An activeset- like method and comparisons
    • J. Kim and H. Park. Fast nonnegative matrix factorization: An activeset- like method and comparisons. SIAM J. on Scientific Computing, 33(6):3261–3281, 2011.
    • (2011) SIAM J. on Scientific Computing , vol.33 , Issue.6 , pp. 3261-3281
    • Kim, J.H.P.1
  • 79
    • 0033592606 scopus 로고    scopus 로고
    • Learning the Parts of Objects by Nonnegative Matrix Factorization
    • D.D. Lee and H.S. Seung. Learning the Parts of Objects by Nonnegative Matrix Factorization. Nature, 401:788–791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 84
    • 80455168744 scopus 로고    scopus 로고
    • FastNMF: Highly efficient monotonic fixed-point nonnegative matrix factorization algorithm with good applicability
    • L. Li and Y.-J. Zhang. FastNMF: highly efficient monotonic fixed-point nonnegative matrix factorization algorithm with good applicability. J. Electron. Imaging, Vol. 18(033004), 2009.
    • (2009) J. Electron. Imaging , vol.18 , Issue.33004
    • Li, L.1    Zhang, Y.-J.2
  • 85
    • 78651345514 scopus 로고    scopus 로고
    • A non-negative matrix trifactorization approach to sentiment classification with lexical prior knowledge
    • T. Li, Y. Zhang, and V. Sindhwani. A non-negative matrix trifactorization approach to sentiment classification with lexical prior knowledge. In Association of Computational Lingustics, pages 244–252, 2009.
    • (2009) Association of Computational Lingustics, Pages , pp. 244-252
    • Li, T.1    Zhang, Y.2    Sindhwani, V.3
  • 86
    • 84873997087 scopus 로고    scopus 로고
    • Hierarchical non-negative matrix factorization (hNMF): A tissue pattern differentiation method for glioblastoma multiforme diagnosis using MRSI
    • Y. Li, D.M. Sima, S. Van Cauter, A.R. Croitor Sava, U. Himmelreich, Y. Pi, and S. Van Huffel. Hierarchical non-negative matrix factorization (hNMF): a tissue pattern differentiation method for glioblastoma multiforme diagnosis using MRSI. NMR in Biomedicine, 26(3):307–319, 2013.
    • (2013) NMR in Biomedicine , vol.26 , Issue.3 , pp. 307-319
    • Li, Y.1    Sima, D.M.2    van Cauter, S.3    Croitor Sava, A.R.4    Himmelreich, U.5    Pi, Y.6    van Huffel, S.7
  • 87
    • 36348966695 scopus 로고    scopus 로고
    • On the convergence of multiplicative update algorithms for nonnegative matrix factorization
    • C.-J. Lin. On the convergence of multiplicative update algorithms for nonnegative matrix factorization. IEEE Trans. on Neural Networks, 18(6):1589–1596, 2007.
    • (2007) IEEE Trans. on Neural Networks , vol.18 , Issue.6 , pp. 1589-1596
    • Lin, C.-J.1
  • 88
    • 35548969471 scopus 로고    scopus 로고
    • Projected Gradient Methods for Nonnegative Matrix Factorization
    • C.-J. Lin. Projected Gradient Methods for Nonnegative Matrix Factorization. Neural Computation, 19:2756–2779, 2007.
    • (2007) Neural Computation , vol.19 , pp. 2756-2779
    • Lin, C.-J.1
  • 89
    • 80052781908 scopus 로고    scopus 로고
    • Sparse non-negative tensor factorization using columnwise coordinate descent
    • J. Liu, J. Liu, P. Wonka, and J. Ye. Sparse non-negative tensor factorization using columnwise coordinate descent. Pattern Recognition, 45(1):649–656, 2012.
    • (2012) Pattern Recognition , vol.45 , Issue.1 , pp. 649-656
    • Liu, J.1    Liu, J.2    Wonka, P.3    Ye, J.4
  • 93
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • L. Miao and H. Qi. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. on Geoscience and Remote Sensing, 45(3):765–777, 2007.
    • (2007) IEEE Trans. on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 95
    • 21744443862 scopus 로고    scopus 로고
    • Blind source separation of positive and partially correlated data
    • W. Naanaa and J.-M. Nuzillard. Blind source separation of positive and partially correlated data. Signal Processing, 85(9):1711–1722, 2005.
    • (2005) Signal Processing , vol.85 , Issue.9 , pp. 1711-1722
    • Naanaa, W.1    Nuzillard, J.-M.2
  • 97
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5:111–126, 1994.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 99
    • 1642290713 scopus 로고    scopus 로고
    • Automatic spectral target recognition in hyperspectral imagery
    • H. Ren and C.-I. Chang. Automatic spectral target recognition in hyperspectral imagery. IEEE Trans. on Aerospace and Electronic Systems, 39(4):1232–1249, 2003.
    • (2003) IEEE Trans. on Aerospace and Electronic Systems , vol.39 , Issue.4 , pp. 1232-1249
    • Ren, H.1    Chang, C.-I.2
  • 102
    • 85142053009 scopus 로고    scopus 로고
    • A Unified View of Static and Dynamic Source Separation Using Non-Negative Factorizations. IEEE Signal Processing Magazine
    • P. Smaragdis, C. Févotte, G.J. Mysore, N. Mohammadiha, and M. Hoffman. A Unified View of Static and Dynamic Source Separation Using Non-Negative Factorizations. IEEE Signal Processing Magazine, 2014.
    • (2014)
    • Smaragdis, P.1    Févotte, C.2    Mysore, G.J.3    Mohammadiha, N.4    Hoffman, M.5
  • 103
    • 84894416864 scopus 로고    scopus 로고
    • Global convergence of modified multiplicative updates for nonnegative matrix factorization
    • N. Takahashi and R. Hibi. Global convergence of modified multiplicative updates for nonnegative matrix factorization. Computational Optimization and Applications, 2013. doi:10.1007/s10589-013-9593-0.
    • (2013) Computational Optimization and Applications
    • Takahashi, N.1    Hibi, R.2
  • 105
    • 73249153369 scopus 로고    scopus 로고
    • On the complexity of nonnegative matrix factorization
    • S.A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM J. on Optimization, 20(3):1364–1377, 2009.
    • (2009) SIAM J. on Optimization , vol.20 , Issue.3 , pp. 1364-1377
    • Vavasis, S.A.1
  • 106
    • 79960845914 scopus 로고    scopus 로고
    • Community discovery using nonnegative matrix factorization. Data Min
    • F. Wang, T. Li, X. Wang, S. Zhu, and C. Ding. Community discovery using nonnegative matrix factorization. Data Min. Knowl. Disc., 22(3):493–521, 2011.
    • (2011) Knowl. Disc. , vol.22 , Issue.3 , pp. 493-521
    • Wang, F.1    Li, T.2    Wang, X.3    Zhu, S.4    Ding, C.5
  • 107
    • 12344317125 scopus 로고    scopus 로고
    • Improving non-negative matrix factorizations through structured initialization
    • S. Wild, J. Curry, and A. Dougherty. Improving non-negative matrix factorizations through structured initialization. Pattern Recognition, 37(11):2217–2232, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.11 , pp. 2217-2232
    • Wild, S.1    Curry, J.2    Dougherty, A.3
  • 108
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. Winter. N-FINDR: an algorithm for fast autonomous spectral endmember determination in hyperspectral data. In Proc. SPIE Conf. on Imaging Spectrometry V, pages 266–275, 1999.
    • (1999) Proc. SPIE Conf. on Imaging Spectrometry V, Pages 266–275
    • Winter, M.1
  • 109
    • 54249084407 scopus 로고    scopus 로고
    • Clustering-based initialization for non-negative matrix factorization
    • Y. Xue, C.S. Tong, Y. Chen, and W.-S. Chen. Clustering-based initialization for non-negative matrix factorization. Applied Mathematics and Computation, 205(2):525–536, 2008.
    • (2008) Applied Mathematics and Computation , vol.205 , Issue.2 , pp. 525-536
    • Xue, Y.1    Tong, C.S.2    Chen, Y.3    Chen, W.-S.4
  • 110
    • 77951938107 scopus 로고    scopus 로고
    • Linear and nonlinear projective nonnegative matrix factorization
    • Z. Yang and E. Oja. Linear and nonlinear projective nonnegative matrix factorization. IEEE Trans. on Neural Networks, 21(5):734–749, 2010.
    • (2010) IEEE Trans. on Neural Networks , vol.21 , Issue.5 , pp. 734-749
    • Yang, Z.1    Oja, E.2
  • 111
    • 0026390010 scopus 로고
    • Expressing Combinatorial Optimization Problems by Linear Programs
    • M. Yannakakis. Expressing Combinatorial Optimization Problems by Linear Programs. Journal of Computer and System Sciences, 43(3):441–466, 1991.
    • (1991) Journal of Computer and System Sciences , vol.43 , Issue.3 , pp. 441-466
    • Yannakakis, M.1
  • 113
    • 24944501423 scopus 로고    scopus 로고
    • Generative model-based document clustering: A comparative study
    • S. Zhong and J. Ghosh. Generative model-based document clustering: a comparative study. Knowledge and Information Systems, 8(3):374–384, 2005.
    • (2005) Knowledge and Information Systems , vol.8 , Issue.3 , pp. 374-384
    • Zhong, S.1    Ghosh, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.