-
1
-
-
0035948747
-
The successive projections algorithm for variable selection in spectroscopic multicomponent analysis
-
DOI 10.1016/S0169-7439(01)00119-8, PII S0169743901001198
-
U.M.C. Araujo, B.T.C. Saldanha, R.K.H. Galv~ao, T. Yoneyama, H.C. Chame, and V. Visani. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory Systems, 57(2):65-73, 2001. (Pubitemid 32622170)
-
(2001)
Chemometrics and Intelligent Laboratory Systems
, vol.57
, Issue.2
, pp. 65-73
-
-
Araujo, M.C.U.1
Saldanha, T.C.B.2
Galvao, R.K.H.3
Yoneyama, T.4
Chame, H.C.5
Visani, V.6
-
2
-
-
84862609231
-
Computing a nonnegative matrix factorization - Provably
-
S. Arora, R. Ge, R. Kannan, and A. Moitra. Computing a nonnegative matrix factorization - provably. In Proc. of the 44th Symp. on Theory of Computing, STOC '12, pages 145- 162, 2012a.
-
(2012)
Proc. of the 44th Symp. on Theory of Computing, STOC '12
, pp. 145-162
-
-
Arora, S.1
Ge, R.2
Kannan, R.3
Moitra, A.4
-
3
-
-
84871960604
-
Learning topic models - Going beyond SVD
-
S. Arora, R. Ge, and A. Moitra. Learning topic models - going beyond SVD. In Proc. of the 53rd Annual IEEE Symp. on Foundations of Computer Science, FOCS '12, pages 1-10, 2012b.
-
(2012)
Proc. of the 53rd Annual IEEE Symp. on Foundations of Computer Science, FOCS '12
, pp. 1-10
-
-
Arora, S.1
Ge, R.2
Moitra, A.3
-
4
-
-
84861772901
-
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
-
Apr
-
J.M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2):354-379, Apr. 2012.
-
(2012)
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, vol.5
, Issue.2
, pp. 354-379
-
-
Bioucas-Dias, J.M.1
Plaza, A.2
Dobigeon, N.3
Parente, M.4
Du, Q.5
Gader, P.6
Chanussot, J.7
-
5
-
-
84877774066
-
Factoring nonnegative matrices with linear programs
-
V. Bittorf, B. Recht, E. Re, and J.A. Tropp. Factoring nonnegative matrices with linear programs. In Advances in Neural Information Processing Systems (NIPS '12), pages 1223-1231, 2012.
-
(2012)
Advances in Neural Information Processing Systems (NIPS '12)
, pp. 1223-1231
-
-
Bittorf, V.1
Recht, B.2
Re, E.3
Tropp, J.A.4
-
6
-
-
54749083549
-
A convex analysis framework for blind separation of non-negative sources
-
T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang. A convex analysis framework for blind separation of non-negative sources. IEEE Trans. on Signal Processing, 56(10):5120-5134, 2008.
-
(2008)
IEEE Trans. on Signal Processing
, vol.56
, Issue.10
, pp. 5120-5134
-
-
Chan, T.-H.1
Ma, W.-K.2
Chi, C.-Y.3
Wang, Y.4
-
7
-
-
82455189646
-
Tissue-specic compartmental analysis for dynamic contrast-enhanced MR imaging of complex tumors
-
L. Chen, P.L. Choyke, T.-H. Chan, C.-Y. Chi, G. Wang, and Y. Wang. Tissue-specic compartmental analysis for dynamic contrast-enhanced MR imaging of complex tumors. IEEE Trans. on Medical Imaging, 30(12):2044-2058, 2011.
-
(2011)
IEEE Trans. on Medical Imaging
, vol.30
, Issue.12
, pp. 2044-2058
-
-
Chen, L.1
Choyke, P.L.2
Chan, T.-H.3
Chi, C.-Y.4
Wang, G.5
Wang, Y.6
-
10
-
-
84862519707
-
A convex model for nonnegative matrix factorization and dimensionality reduction on physical space
-
E. Esser, M. Moller, S. Osher, G. Sapiro, and J. Xin. A convex model for nonnegative matrix factorization and dimensionality reduction on physical space. IEEE Trans. On Image Processing, 21(7):3239-3252, 2012.
-
(2012)
IEEE Trans. on Image Processing
, vol.21
, Issue.7
, pp. 3239-3252
-
-
Esser, E.1
Moller, M.2
Osher, S.3
Sapiro, G.4
Xin, J.5
-
11
-
-
84870868704
-
Sparse and unique nonnegative matrix factorization through data preprocessing
-
(Nov)
-
N. Gillis. Sparse and unique nonnegative matrix factorization through data preprocessing. Journal of Machine Learning Research, 13(Nov):3349-3386, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 3349-3386
-
-
Gillis, N.1
-
12
-
-
84887361620
-
Robustness analysis of Hottopixx, a linear programming model for factoring nonnegative matrices
-
N. Gillis. Robustness analysis of Hottopixx, a linear programming model for factoring nonnegative matrices. SIAM J. Mat. Anal. Appl., 34(3):1189-1212, 2013.
-
(2013)
SIAM J. Mat. Anal. Appl
, vol.34
, Issue.3
, pp. 1189-1212
-
-
Gillis, N.1
-
13
-
-
84897475291
-
Fast and robust recursive algorithms for separable nonnegative matrix factorization
-
N. Gillis and S.A. Vavasis. Fast and robust recursive algorithms for separable nonnegative matrix factorization. IEEE Trans. Pattern Anal. Mach. Intell., 36(4):698-714, 2014.
-
(2014)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.36
, Issue.4
, pp. 698-714
-
-
Gillis, N.1
Vavasis, S.A.2
-
15
-
-
84894650699
-
Fast conical hull algorithms for near-separable non-negative matrix factorization
-
A. Kumar, V. Sindhwani, and P. Kambadur. Fast conical hull algorithms for near-separable non-negative matrix factorization. In Int. Conf. on Machine Learning (ICML '13), volume 28, pages 231-239. 2013.
-
(2013)
Int. Conf. on Machine Learning (ICML '13)
, vol.28
, pp. 231-239
-
-
Kumar, A.1
Sindhwani, V.2
Kambadur, P.3
-
16
-
-
73249153369
-
On the complexity of nonnegative matrix factorization
-
S.A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM J. on Optimization, 20(3):1364-1377, 2009.
-
(2009)
SIAM J. on Optimization
, vol.20
, Issue.3
, pp. 1364-1377
-
-
Vavasis, S.A.1
|