-
1
-
-
34547198396
-
Algorithms and applications for approximate nonnegative matrix factorization
-
Submitted
-
M. Berry, M. Browne, A. Langville, P. Pauca, and R. Plemmon. Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis, 2007. Submitted.
-
(2007)
Computational Statistics and Data Analysis
-
-
Berry, M.1
Browne, M.2
Langville, A.3
Pauca, P.4
Plemmon, R.5
-
3
-
-
74449093261
-
Fast local algorithms for large scale nonnegative matrix and tensor factorizations
-
A. Cichocki and A.-H. Phan. Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Transaction on Fundamentals, E92-A(3):708-721, 2009.
-
(2009)
IEICE Transaction on Fundamentals
, vol.E92-A
, Issue.3
, pp. 708-721
-
-
Cichocki, A.1
Phan, A.-H.2
-
6
-
-
0033904057
-
On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
-
DOI 10.1016/S0167-6377(99)00074-7
-
L. Grippo and M. Sciandrone. On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Operations Research Letters, 26:127-136, 2000. (Pubitemid 30564332)
-
(2000)
Operations Research Letters
, vol.26
, Issue.3
, pp. 127-136
-
-
Grippo, L.1
Sciandrone, M.2
-
8
-
-
84900510076
-
Non-negative matrix factorization with sparseness constraints
-
P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5:1457-1469, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1457-1469
-
-
Hoyer, P.O.1
-
11
-
-
67349093319
-
Non-negative matrix factorization based on alternating non-negativity constrained least squares and active set method
-
J. Kim and H. Park. Non-negative matrix factorization based on alternating non-negativity constrained least squares and active set method. SIAM Journal on Matrix Analysis and Applications, 30(2):713-730, 2008.
-
(2008)
SIAM Journal on Matrix Analysis and Applications
, vol.30
, Issue.2
, pp. 713-730
-
-
Kim, J.1
Park, H.2
-
13
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
November 1998. MNIST database available at
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998. MNIST database available at http://yann.lecun.com/exdb/mnist/.
-
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
14
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
15
-
-
84898964201
-
Algorithms for non-negative matrix factorization
-
T. K. Leen, T. G. Dietterich, and V. Tresp, editors, MIT Press
-
D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 556-562. MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
16
-
-
84876811202
-
RCV1: A new benchmark collection for text categorization research
-
D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5:361-397, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 361-397
-
-
Lewis, D.D.1
Yang, Y.2
Rose, T.G.3
Li., F.4
-
17
-
-
77956506829
-
Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm
-
Y. Li and S. Osher. Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm. Inverse Probl. Imaging, 3(3):487-503, 2009.
-
(2009)
Inverse Probl. Imaging
, vol.3
, Issue.3
, pp. 487-503
-
-
Li, Y.1
Osher, S.2
-
18
-
-
35548969471
-
Projected gradient methods for non-negative matrix factorization
-
C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19:2756-2779, 2007.
-
(2007)
Neural Computation
, vol.19
, pp. 2756-2779
-
-
Lin, C.-J.1
-
20
-
-
0028561099
-
Positive matrix factorization: A non-negative factor model with optimal utilization of error
-
P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error. Environmetrics, 5:111-126, 1994.
-
(1994)
Environmetrics
, vol.5
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
21
-
-
1942418470
-
Grafting: Fast, incremental feature selection by gradient descent in function space
-
S. Perkins, K. Lacker, and J. Theiler. Grafting: Fast, incremental feature selection by gradient descent in function space. Journal of Machine Learning Research, 3:1333-1356, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1333-1356
-
-
Perkins, S.1
Lacker, K.2
Theiler, J.3
|