메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1064-1072

Fast coordinate descent methods with variable selection for non-negative matrix factorization

Author keywords

Algorithms; Experimentation; Performance

Indexed keywords

CONSTRAINED OPTIMIZATION; CONVEX OPTIMIZATION; DATA MINING; IMAGE PROCESSING; LEAST SQUARES APPROXIMATIONS; MATRIX ALGEBRA; NEWTON-RAPHSON METHOD;

EID: 80052651461     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2020408.2020577     Document Type: Conference Paper
Times cited : (208)

References (23)
  • 3
    • 74449093261 scopus 로고    scopus 로고
    • Fast local algorithms for large scale nonnegative matrix and tensor factorizations
    • A. Cichocki and A.-H. Phan. Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Transaction on Fundamentals, E92-A(3):708-721, 2009.
    • (2009) IEICE Transaction on Fundamentals , vol.E92-A , Issue.3 , pp. 708-721
    • Cichocki, A.1    Phan, A.-H.2
  • 6
    • 0033904057 scopus 로고    scopus 로고
    • On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
    • DOI 10.1016/S0167-6377(99)00074-7
    • L. Grippo and M. Sciandrone. On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Operations Research Letters, 26:127-136, 2000. (Pubitemid 30564332)
    • (2000) Operations Research Letters , vol.26 , Issue.3 , pp. 127-136
    • Grippo, L.1    Sciandrone, M.2
  • 8
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5:1457-1469, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 11
    • 67349093319 scopus 로고    scopus 로고
    • Non-negative matrix factorization based on alternating non-negativity constrained least squares and active set method
    • J. Kim and H. Park. Non-negative matrix factorization based on alternating non-negativity constrained least squares and active set method. SIAM Journal on Matrix Analysis and Applications, 30(2):713-730, 2008.
    • (2008) SIAM Journal on Matrix Analysis and Applications , vol.30 , Issue.2 , pp. 713-730
    • Kim, J.1    Park, H.2
  • 13
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • November 1998. MNIST database available at
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998. MNIST database available at http://yann.lecun.com/exdb/mnist/.
    • Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 14
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 15
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • T. K. Leen, T. G. Dietterich, and V. Tresp, editors, MIT Press
    • D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 556-562. MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 17
    • 77956506829 scopus 로고    scopus 로고
    • Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm
    • Y. Li and S. Osher. Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm. Inverse Probl. Imaging, 3(3):487-503, 2009.
    • (2009) Inverse Probl. Imaging , vol.3 , Issue.3 , pp. 487-503
    • Li, Y.1    Osher, S.2
  • 18
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for non-negative matrix factorization
    • C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19:2756-2779, 2007.
    • (2007) Neural Computation , vol.19 , pp. 2756-2779
    • Lin, C.-J.1
  • 20
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error
    • P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error. Environmetrics, 5:111-126, 1994.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 21
    • 1942418470 scopus 로고    scopus 로고
    • Grafting: Fast, incremental feature selection by gradient descent in function space
    • S. Perkins, K. Lacker, and J. Theiler. Grafting: Fast, incremental feature selection by gradient descent in function space. Journal of Machine Learning Research, 3:1333-1356, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1333-1356
    • Perkins, S.1    Lacker, K.2    Theiler, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.