메뉴 건너뛰기




Volumn 13, Issue , 2012, Pages 3349-3386

Sparse and unique nonnegative matrix factorization through data preprocessing

Author keywords

Data preprocessing; Inversepositive matrices; Nonnegative matrix factorization; Sparsity; Uniqueness

Indexed keywords

DATA PREPROCESSING; GEOMETRIC INTERPRETATION; ILL POSED; IMAGE DATASETS; INPUT DATAS; M-MATRICES; NONNEGATIVE MATRIX FACTORIZATION; PART-BASED REPRESENTATION; SPARSE SOLUTIONS; SPARSITY; UNIQUENESS;

EID: 84870868704     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (124)

References (40)
  • 4
    • 84856262691 scopus 로고    scopus 로고
    • Perturbation of matrices and non-negative rank with a view toward statistical models
    • C. Bocci, E. Carlini, and F. Rapallo. Perturbation of matrices and non-negative rank with a view toward statistical models. SIAM. J. Matrix Anal. & Appl., 32(4):1500-1512, 2011.
    • (2011) SIAM. J. Matrix Anal. & Appl , vol.324 , pp. 1500-1512
    • Bocci, C.1    Carlini, E.2    Rapallo, F.3
  • 6
    • 55549091744 scopus 로고    scopus 로고
    • Low-dimensional polytope approximation and its applications to nonnegative matrix factorization
    • M.T. Chu and M.M. Lin. Low-dimensional polytope approximation and its applications to nonnegative matrix factorization. SIAM J. Sci. Comput., 30(3):1131-1155, 2008.
    • (2008) SIAM J. Sci. Comput , vol.30 , Issue.3 , pp. 1131-1155
    • Chu, M.T.1    Lin, M.M.2
  • 8
    • 0028427066 scopus 로고
    • Minimum-volume tranforms for remotely sensed data
    • M.D. Craig. Minimum-volume tranforms for remotely sensed data. IEEE Trans. On Geoscience and Remote Sensing, 32(3):542-552, 1994.
    • (1994) IEEE Trans. On Geoscience and Remote Sensing , vol.32 , Issue.3 , pp. 542-552
    • Craig, M.D.1
  • 9
    • 33749255098 scopus 로고    scopus 로고
    • On the equivalence of nonnegative matrix factorization and spectral clustering. In
    • C. Ding, X. He, and H.D. Simon. On the equivalence of nonnegative matrix factorization and spectral clustering. In SIAM Int. Conf. Data Mining (SDM'05), pages 606-610, 2005.
    • (2005) SIAM Int. Conf. Data Mining (SDM'05) , pp. 606-610
    • Ding, C.1    He, X.2    Simon, H.D.3
  • 11
    • 23744456750 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts?
    • D. Donoho and V. Stodden. When does non-negative matrix factorization give a correct decomposition into parts? In Advances in Neural Information Processing Systems 16, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.16
    • Donoho, D.1    Stodden, V.2
  • 12
    • 63249085556 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis
    • C. F́evotte, N. Bertin, and J.L. Durrieu. Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis. Neural Computation, 21(3):793-830, 2009.
    • (2009) Neural Computation , vol.21 , Issue.3 , pp. 793-830
    • F́evotte, C.1    Bertin, N.2    Durrieu, J.L.3
  • 15
    • 74449083451 scopus 로고    scopus 로고
    • Using underapproximations for sparse nonnegative matrix factorization
    • N. Gillis and F. Glineur. Using underapproximations for sparse nonnegative matrix factorization. Pattern Recognition, 43(4):1676-1687, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.4 , pp. 1676-1687
    • Gillis, N.1    Glineur, F.2
  • 16
    • 84865687533 scopus 로고    scopus 로고
    • On the geometric interpretation of the nonnegative rank
    • N. Gillis and F. Glineur. On the geometric interpretation of the nonnegative rank. Linear Algebra and its Applications, 437(11):2685-2712, 2012a.
    • (2012) Linear Algebra and its Applications , vol.437 , Issue.11 , pp. 2685-2712
    • Gillis, N.1    Glineur, F.2
  • 17
    • 84861111031 scopus 로고    scopus 로고
    • Accelerated multiplicative updates and hierarchical als algorithms for nonnegative matrix factorization
    • N. Gillis and F. Glineur. Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix factorization. Neural Computation, 24(4):1085-1105, 2012b.
    • (2012) Neural Computation , vol.24 , Issue.4 , pp. 1085-1105
    • Gillis, N.1    Glineur, F.2
  • 20
    • 84900510076 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with sparseness constraints
    • P.O. Hoyer. Nonnegative matrix factorization with sparseness constraints. J. Machine Learning Research, 5:1457-1469, 2004.
    • (2004) J. Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 21
    • 77952582975 scopus 로고    scopus 로고
    • Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data
    • A. Huck, M. Guillaume, and J. Blanc-Talon. Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data. IEEE Trans. On Geoscience and Remote Sensing, 48 (6):2590-2602, 2010.
    • (2010) IEEE Trans. On Geoscience and Remote Sensing , vol.48 , Issue.6 , pp. 2590-2602
    • Huck, A.1    Guillaume, M.2    Blanc-Talon, J.3
  • 23
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • DOI 10.1093/bioinformatics/btm134
    • H. Kim and H. Park. Sparse non-negative matrix factorizations via alternating non-negativityconstrained least squares for microarray data analysis. Bioinformatics, 23(12):1495-1502, 2007. (Pubitemid 47244474)
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 24
    • 58249092020 scopus 로고    scopus 로고
    • Non-negative matrix factorization: Ill-posedness and a geometric algorithm
    • B. Klingenberg, J. Curry, and A. Dougherty. Non-negative matrix factorization: Ill-posedness and a geometric algorithm. Pattern Recognition, 42(5):918-928, 2009.
    • (2009) Pattern Recognition , vol.42 , Issue.5 , pp. 918-928
    • Klingenberg, B.1    Curry, J.2    Dougherty, A.3
  • 26
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D.D. Lee and H.S. Seung. Learning the parts of objects by nonnegative matrix factorization. Nature, 401:788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 27
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L. Miao and H. Qi. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. On Geoscience and Remote Sensing, 45 (3):765-777, 2007. (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 28
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5:111-126, 1994.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 29
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • DOI 10.1016/j.laa.2005.06.025, PII S002437950500340X
    • V.P. Pauca, J. Piper, and R.J. Plemmons. Nonnegative matrix factorization for spectral data analysis. Linear Algebra and its Applications, 406(1):29-47, 2006. (Pubitemid 43737212)
    • (2006) Linear Algebra and Its Applications , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 30
    • 18844398597 scopus 로고    scopus 로고
    • Hard problems in linear control theory: Possible approaches to solution
    • DOI 10.1007/s10513-005-0115-0
    • B.T. Polyak and P.S. Shcherbakov. Hard problems in linear control theory: Possible approaches to solution. Automation and Remote Control, 66:681-718, 2005. (Pubitemid 40683646)
    • (2005) Automation and Remote Control , vol.66 , Issue.5 , pp. 681-718
    • Polyak, B.T.1    Shcherbakov, P.S.2
  • 32
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization
    • G.B. Recht, M. Fazel, and P.A. Parrilo. Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471-501, 2010.
    • (2010) SIAM Review , vol.523 , pp. 471-501
    • Recht, G.B.1    Fazel, M.2    Parrilo, P.A.3
  • 33
    • 80052705373 scopus 로고    scopus 로고
    • Underdetermined sparse blind source separation of nonnegative and partially overlapped data
    • Y. Sun and J. Xin. Underdetermined sparse blind source separation of nonnegative and partially overlapped data. SIAM Journal on Scientific Computing, 33(4):2063-2094, 2011.
    • (2011) SIAM Journal on Scientific Computing , vol.334 , pp. 2063-2094
    • Sun, Y.1    Xin, J.2
  • 34
    • 0000004244 scopus 로고
    • A recurring theorem on determinants
    • O. Taussky. A recurring theorem on determinants. The American Mathematical Monthly, 56(10): 672-676, 1949.
    • (1949) The American Mathematical Monthly , vol.56 , Issue.10 , pp. 672-676
    • Taussky, O.1
  • 36
    • 0039889366 scopus 로고
    • Rank factorization of nonnegative matrices
    • L.B. Thomas. Rank factorization of nonnegative matrices. SIAM Review, 16(3):393-394, 1974.
    • (1974) SIAM Review , vol.16 , Issue.3 , pp. 393-394
    • Thomas, L.B.1
  • 37
    • 73249153369 scopus 로고    scopus 로고
    • On the complexity of nonnegative matrix factorization
    • S.A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM J. On Optimization, 20 (3):1364-1377, 2009.
    • (2009) SIAM J. On Optimization , vol.20 , Issue.3 , pp. 1364-1377
    • Vavasis, S.A.1
  • 38
    • 77949836282 scopus 로고    scopus 로고
    • Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization
    • F.-Y. Wang, C.-Y. Chi, T.-H. Chan, and Y. Wang. Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization. IEEE Trans. On Pattern Analysis and Machine Intelligence, 32(5):875-888, 2010.
    • (2010) IEEE Trans. On Pattern Analysis and Machine Intelligence , vol.325 , pp. 875-888
    • Wang, F.-Y.1    Chi, C.-Y.2    Chan, T.-H.3    Wang, Y.4
  • 40
    • 80053637334 scopus 로고    scopus 로고
    • Minimum-volume-constrained nonnegative matrix factorization: Enhanced ability of learning parts
    • G. Zhou, S. Xie, Z. Yang, J.-M. Yang, and Z. He. Minimum-volume- constrained nonnegative matrix factorization: Enhanced ability of learning parts. IEEE Trans. On Neural Networks, 22(10):1626-1637, 2011.
    • (2011) IEEE Trans. On Neural Networks , vol.2210 , pp. 1626-1637
    • Zhou, G.1    Xie, S.2    Yang, Z.3    Yang, J.-M.4    He, Z.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.