-
1
-
-
84861772901
-
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
-
J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot, "Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches," IEEE J. Sel. Topics Appl. Earth Observ., vol. 5, no. 2, pp. 354-379, 2012.
-
(2012)
IEEE J. Sel. Topics Appl. Earth Observ.
, vol.5
, Issue.2
, pp. 354-379
-
-
Bioucas-Dias, J.M.1
Plaza, A.2
Dobigeon, N.3
Parente, M.4
Du, Q.5
Gader, P.6
Chanussot, J.7
-
2
-
-
0002596793
-
Mapping target signatures via partial unmixing of aviris data
-
Pasadena, CA, Dec
-
J. W. Boardman, F. A. Kruse, and R. O. Green, "Mapping target signatures via partial unmixing of aviris data," in Proc. Summ. JPL Airborne Earth Sci. Workshop, Pasadena, CA, Dec 1995, vol. 1, pp. 23-26.
-
(1995)
Proc. Summ. JPL Airborne Earth Sci. Workshop
, vol.1
, pp. 23-26
-
-
Boardman, J.W.1
Kruse, F.A.2
Green, R.O.3
-
3
-
-
0033310314
-
N-findr: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
-
M. E. Winter, "N-findr: an algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. SPIE's Inter. Sym. Opt. Sci. Eng. Inst., 1999, pp. 266-275.
-
(1999)
Proc. SPIE's Inter. Sym. Opt. Sci. Eng. Inst.
, pp. 266-275
-
-
Winter, M.E.1
-
4
-
-
0035948747
-
The successive projections algorithm for variable selection in spectroscopic multicomponent analysis
-
U. M. C. Aráujo, B. T. C. Saldanha, R. K. H Galvão, T. Yoneyama, H. C. Chame, and V. Visani, "The successive projections algorithm for variable selection in spectroscopic multicomponent analysis," Chemometrics and Intelligent Laboratory Systems, vol. 57, no. 2, pp. 65-73, 2001.
-
(2001)
Chemometrics and Intelligent Laboratory Systems
, vol.57
, Issue.2
, pp. 65-73
-
-
Aráujo, U.M.C.1
Saldanha, B.T.C.2
Galvão, R.K.H.3
Yoneyama, T.4
Chame, H.C.5
Visani, V.6
-
5
-
-
1642290713
-
Automatic spectral target recognition in hyperspectral imagery
-
H. Ren and C. I. Chang, "Automatic spectral target recognition in hyperspectral imagery," IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1232-1249, 2003.
-
(2003)
IEEE Trans. Aerosp. Electron. Syst.
, vol.39
, Issue.4
, pp. 1232-1249
-
-
Ren, H.1
Chang, C.I.2
-
6
-
-
16444373735
-
Vertex component analysis: A fast algorithm to unmix hyperspectral data
-
J. M. P. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, 2005.
-
(2005)
IEEE Trans. Geosci. Remote Sens.
, vol.43
, Issue.4
, pp. 898-910
-
-
Nascimento, J.M.P.1
Bioucas-Dias, J.M.2
-
7
-
-
80455174042
-
A simplex volume maximization framework for hyperspectral endmember extraction
-
Nov.
-
T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, "A simplex volume maximization framework for hyperspectral endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4177-4193, Nov. 2011.
-
(2011)
IEEE Trans. Geosci. Remote Sens.
, vol.49
, Issue.11
, pp. 4177-4193
-
-
Chan, T.-H.1
Ma, W.-K.2
Ambikapathi, A.3
Chi, C.-Y.4
-
9
-
-
84862519707
-
A convex model for nonnegative matrix factorization and dimensionality reduction on physical space
-
Jul.
-
E. Esser, M. Moller, S. Osher, G. Sapiro, and J. Xin, "A convex model for nonnegative matrix factorization and dimensionality reduction on physical space," IEEE Trans. Image Process., vol. 21, no. 7, pp. 3239-3252, Jul. 2012.
-
(2012)
IEEE Trans. Image Process
, vol.21
, Issue.7
, pp. 3239-3252
-
-
Esser, E.1
Moller, M.2
Osher, S.3
Sapiro, G.4
Xin, J.5
-
10
-
-
84866685721
-
See all by looking at a few: Sparse modeling for finding representative objects
-
E. Elhamifar, G. Sapiro, and R. Vidal, "See all by looking at a few: Sparse modeling for finding representative objects," in Proc. IEEE CVPR 2012, 2012, pp. 1600-1607.
-
(2012)
Proc. IEEE CVPR 2012
, pp. 1600-1607
-
-
Elhamifar, E.1
Sapiro, G.2
Vidal, R.3
-
11
-
-
33947142837
-
Theoretical results on sparse representations of multiple-measurement vectors
-
Dec.
-
J. Chen and X. Huo, "Theoretical results on sparse representations of multiple-measurement vectors," IEEE Trans. Signal Process., vol. 54, no. 12, pp. 4634-4643, Dec. 2006.
-
(2006)
IEEE Trans. Signal Process
, vol.54
, Issue.12
, pp. 4634-4643
-
-
Chen, J.1
Huo, X.2
-
12
-
-
30844445842
-
Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
-
J. A. Tropp, A. C. Gilbert, and M. J. Strauss, "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit," Signal Process., vol. 86, no. 3, pp. 572-588, 2006.
-
(2006)
Signal Process
, vol.86
, Issue.3
, pp. 572-588
-
-
Tropp, J.A.1
Gilbert, A.C.2
Strauss, M.J.3
-
13
-
-
30844461481
-
Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
-
J. A. Tropp, "Algorithms for simultaneous sparse approximation. Part II: Convex relaxation," Signal Process., vol. 86, no. 3, pp. 589-602, 2006.
-
(2006)
Signal Process
, vol.86
, Issue.3
, pp. 589-602
-
-
Tropp, J.A.1
-
14
-
-
53149111169
-
Reduce and boost: Recovering arbitrary sets of jointly sparse vectors
-
M. Mishali and Y. C. Eldar, "Reduce and boost: Recovering arbitrary sets of jointly sparse vectors," IEEE Trans. Signal Process., vol. 56, no. 10, pp. 4692-4702, 2008.
-
(2008)
IEEE Trans. Signal Process
, vol.56
, Issue.10
, pp. 4692-4702
-
-
Mishali, M.1
Eldar, Y.C.2
-
16
-
-
80455128741
-
Convex analysis for non-negative blind source separation with application in imaging
-
D. P. Palomar and Y. C. Eldar, Eds. Cambridge University Press
-
W.-K. Ma, T.-H. Chan, C.-Y. Chi, and Y. Wang, "Convex analysis for non-negative blind source separation with application in imaging," in Convex Optimization in Signal Processing and Communications, D. P. Palomar and Y. C. Eldar, Eds. Cambridge University Press, 2010.
-
(2010)
Convex Optimization in Signal Processing and Communications
-
-
Ma, W.-K.1
Chan, T.-H.2
Chi, C.-Y.3
Wang, Y.4
|