메뉴 건너뛰기




Volumn 106, Issue 3, 2009, Pages 697-702

CUR matrix decompositions for improved data analysis

Author keywords

Interpretation; Principal components analysis; Randomized algorithms; Singular value decomposition; Statistical leverage

Indexed keywords

ALGORITHM; ANALYTICAL ERROR; ARTICLE; CANCER DIAGNOSIS; CANCER GROWTH; CANCER SURVIVAL; COLON ADENOCARCINOMA; COLORECTAL CARCINOMA; DATA ANALYSIS; GASTROINTESTINAL STROMAL TUMOR; GENE EXPRESSION; HUMAN; LEIOMYOSARCOMA; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; REGRESSION ANALYSIS; STATISTICAL ANALYSIS; SYNOVIAL SARCOMA; VARIANCE;

EID: 58849086813     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.0803205106     Document Type: Article
Times cited : (769)

References (32)
  • 3
    • 2542430932 scopus 로고    scopus 로고
    • Singular value decomposition and principal component analysis
    • eds Berrar DP, Dubitzky W, Granzow M Kluwer, Boston, pp
    • Wall ME, Rechtsteiner A, Rocha LM (2003) Singular value decomposition and principal component analysis. In A Practical Approach to Microarray Data Analysis, eds Berrar DP, Dubitzky W, Granzow M (Kluwer, Boston), pp 91-109.
    • (2003) A Practical Approach to Microarray Data Analysis , pp. 91-109
    • Wall, M.E.1    Rechtsteiner, A.2    Rocha, L.M.3
  • 4
    • 0032112293 scopus 로고    scopus 로고
    • A genome-wide transcriptional analysis of the mitotic cell cycle
    • Cho RJ, et al. (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2:65-73.
    • (1998) Mol Cell , vol.2 , pp. 65-73
    • Cho, R.J.1
  • 5
    • 0038217829 scopus 로고    scopus 로고
    • Vector algebra in the analysis of genomewide expression data
    • research0011.1-0011.11
    • Kuruvilla FG, Park PJ, Schreiber SL (2002) Vector algebra in the analysis of genomewide expression data. Genome Biol 3:research0011.1-0011.11.
    • (2002) Genome Biol , vol.3
    • Kuruvilla, F.G.1    Park, P.J.2    Schreiber, S.L.3
  • 6
    • 0011432607 scopus 로고
    • Burt and the early history of factor analysis
    • ed Mackintosh NJ Oxford Univ Press, New York
    • Blinkhorn SF (1995) Burt and the early history of factor analysis. In Cyril Burt: Fraud or Framed? ed Mackintosh NJ (Oxford Univ Press, New York).
    • (1995) Cyril Burt: Fraud or Framed
    • Blinkhorn, S.F.1
  • 7
    • 0040117178 scopus 로고    scopus 로고
    • Four algorithms for the efficient computation of truncated QR approximations to a sparse matrix
    • Stewart GW (1999) Four algorithms for the efficient computation of truncated QR approximations to a sparse matrix. Numer Math 83:313-323.
    • (1999) Numer Math , vol.83 , pp. 313-323
    • Stewart, G.W.1
  • 8
    • 33646775529 scopus 로고    scopus 로고
    • Computing sparse reduced-rank approximations to sparse matrices
    • TR-2004-32 CMSC TR-4589 University of Maryland, College Park, MD
    • Berry MW, Pulatova SA, Stewart GW (2004) Computing sparse reduced-rank approximations to sparse matrices. Technical Report UMIACS TR-2004-32 CMSC TR-4589 (University of Maryland, College Park, MD).
    • (2004) Technical Report UMIACS
    • Berry, M.W.1    Pulatova, S.A.2    Stewart, G.W.3
  • 10
    • 0037790752 scopus 로고    scopus 로고
    • The maximum-volume concept in approximation by low-rank matrices
    • Goreinov SA, Tyrtyshnikov EE (2001) The maximum-volume concept in approximation by low-rank matrices. Contemp Math 280:47-51.
    • (2001) Contemp Math , vol.280 , pp. 47-51
    • Goreinov, S.A.1    Tyrtyshnikov, E.E.2
  • 11
    • 20444476106 scopus 로고    scopus 로고
    • Fast Monte-Carlo algorithms for finding low-rank approximations
    • Frieze A, Kannan R, Vempala S (2004) Fast Monte-Carlo algorithms for finding low-rank approximations. J ACM 51(6):1025-1041.
    • (2004) J ACM , vol.51 , Issue.6 , pp. 1025-1041
    • Frieze, A.1    Kannan, R.2    Vempala, S.3
  • 12
    • 33751097630 scopus 로고    scopus 로고
    • Fast Monte Carlo algorithms for matrices III: Computing a compressed approximate matrix decomposition
    • Drineas P, Kannan R, Mahoney MW (2006) Fast Monte Carlo algorithms for matrices III: Computing a compressed approximate matrix decomposition. SIAM J Comput 36:184-206.
    • (2006) SIAM J Comput , vol.36 , pp. 184-206
    • Drineas, P.1    Kannan, R.2    Mahoney, M.W.3
  • 14
    • 33845995419 scopus 로고    scopus 로고
    • Intra- and interpopulation genotype reconstruction from tagging SNPs
    • Paschou P, et al. (2007) Intra- and interpopulation genotype reconstruction from tagging SNPs. Genome Res 17:96-107.
    • (2007) Genome Res , vol.17 , pp. 96-107
    • Paschou, P.1
  • 19
    • 84948783167 scopus 로고
    • The hat matrix in regression and ANOVA
    • Hoaglin DC, Welsch RE (1978) The hat matrix in regression and ANOVA. Am Stat 32:17-22.
    • (1978) Am Stat , vol.32 , pp. 17-22
    • Hoaglin, D.C.1    Welsch, R.E.2
  • 21
    • 84972496372 scopus 로고
    • Influential observations, high leverage points, and outliers in linear regression
    • Chatterjee S, Hadi AS (1986) Influential observations, high leverage points, and outliers in linear regression. Stat Sci 1:379-393.
    • (1986) Stat Sci , vol.1 , pp. 379-393
    • Chatterjee, S.1    Hadi, A.S.2
  • 22
    • 0001639411 scopus 로고
    • Efficient computing of regression diagnostics
    • Velleman PF, Welsch RE (1981) Efficient computing of regression diagnostics. Am Stat 35:234-242.
    • (1981) Am Stat , vol.35 , pp. 234-242
    • Velleman, P.F.1    Welsch, R.E.2
  • 25
    • 1842738366 scopus 로고    scopus 로고
    • From paragraph to graph: Latent semantic analysis for information visualization
    • Landauer TK, Laham D, Derr M (2004) From paragraph to graph: Latent semantic analysis for information visualization. Proc Natl Acad Sci USA 101:5214-5219.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 5214-5219
    • Landauer, T.K.1    Laham, D.2    Derr, M.3
  • 26
    • 58849157369 scopus 로고    scopus 로고
    • Available at, Accessed October 8, 2007
    • Open Directory Project. Available at http://www.dmoz.org/. Accessed October 8, 2007.
  • 27
    • 33749382486 scopus 로고    scopus 로고
    • Text categorization with many redundant features: Using aggressive feature selection to make SVMs competitive with C4.5
    • Association for Computing Machinery, New York, pp
    • Gabrilovich E, Markovitch S (2004) Text categorization with many redundant features: using aggressive feature selection to make SVMs competitive with C4.5. Proceedings of the 21th International Conference on Machine Learning (Association for Computing Machinery, New York), pp 41-48.
    • (2004) Proceedings of the 21th International Conference on Machine Learning , pp. 41-48
    • Gabrilovich, E.1    Markovitch, S.2
  • 28
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genomewide expression data processing and modeling
    • Alter O, Brown PO, Botstein D (2000) Singular value decomposition for genomewide expression data processing and modeling. Proc Natl Acad Sci USA 97:10101-10106.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 29
    • 0034682504 scopus 로고    scopus 로고
    • Fundamental patterns underlying gene expression profiles: Simplicity from complexity
    • Holter NS, et al. (2000) Fundamental patterns underlying gene expression profiles: Simplicity from complexity. Proc Natl Acad Sci USA 97:8409-8414.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 8409-8414
    • Holter, N.S.1
  • 30
    • 0037070754 scopus 로고    scopus 로고
    • Molecular characterisation of soft tissue tumours: A gene expression study
    • Nielsen T, et al. (2002) Molecular characterisation of soft tissue tumours: A gene expression study. Lancet 359:1301-1307.
    • (2002) Lancet , vol.359 , pp. 1301-1307
    • Nielsen, T.1
  • 31


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.