메뉴 건너뛰기




Volumn 36, Issue 4, 2014, Pages 698-714

Fast and robust recursive algorithmsfor separable nonnegative matrix factorization

Author keywords

algorithms; hyperspectral unmixing; linear mixing model; Nonnegative matrix factorization; pure pixel assumption; robustness; separability

Indexed keywords

ALGORITHMS; PIXELS; ROBUSTNESS (CONTROL SYSTEMS);

EID: 84897475291     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2013.226     Document Type: Article
Times cited : (254)

References (30)
  • 8
    • 0000673625 scopus 로고
    • Linear least squares solutions by householder transformations
    • P. Businger and G. Golub, "Linear Least Squares Solutions by Householder Transformations," Numerische Mathematik, vol. 7, pp. 269-276, 1965.
    • (1965) Numerische Mathematik , vol.7 , pp. 269-276
    • Businger, P.1    Golub, G.2
  • 9
    • 78649910530 scopus 로고    scopus 로고
    • On selecting a maximum volume sub-matrix of a matrix and related problems
    • A. Çivril and M. Magdon-Ismail, "On Selecting a Maximum Volume Sub-Matrix of a Matrix and Related Problems," Theoretical Computer Science, vol. 410, no. 47-49, pp. 4801-4811, 2009.
    • (2009) Theoretical Computer Science , vol.410 , Issue.47-49 , pp. 4801-4811
    • Civril, A.1    Magdon-Ismail, M.2
  • 10
    • 84872617323 scopus 로고    scopus 로고
    • Exponential inapproximability of selecting a maximum volume sub-matrix
    • doi:10.1007/s00453-011-9582-6
    • A. Çivril and M. Magdon-Ismail, "Exponential Inapproximability of Selecting a Maximum Volume Sub-Matrix," Algorithmica, vol. 65, pp. 159-176, 2011, doi:10.1007/s00453-011-9582-6.
    • (2011) Algorithmica , vol.65 , pp. 159-176
    • Çivril, A.1    Magdon-Ismail, M.2
  • 11
    • 80455174042 scopus 로고    scopus 로고
    • A simplex volume maximization framework for hyperspectral endmember extraction
    • Nov.
    • T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, "A Simplex Volume Maximization Framework for Hyperspectral Endmember Extraction," IEEE Trans. Geoscience and Remote Sensing, vol. 49, no. 11, pp. 4177-4193, Nov. 2011.
    • (2011) IEEE Trans. Geoscience and Remote Sensing , vol.49 , Issue.11 , pp. 4177-4193
    • Chan, T.-H.1    Ma, W.-K.2    Ambikapathi, A.3    Chi, C.-Y.4
  • 12
    • 84887415911 scopus 로고    scopus 로고
    • A new growing method for simplex-based endmember extraction algorithm
    • Oct.
    • C.-I. Chang, C.-C. Wu, W.-M. Liu, and Y.-C. Ouyang, "A New Growing Method for Simplex-Based Endmember Extraction Algorithm," IEEE Trans. Geoscience and Remote Sensing, vol. 44, no. 10, pp. 2804-2819, Oct. 2006.
    • (2006) IEEE Trans. Geoscience and Remote Sensing , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.-I.1    Wu, C.-C.2    Liu, W.-M.3    Ouyang, Y.-C.4
  • 13
    • 0028427066 scopus 로고
    • Minimum-volume tranforms for remotely sensed data
    • May
    • M. Craig, "Minimum-Volume Tranforms for Remotely Sensed Data," IEEE Trans. Geoscience and Remote Sensing, vol. 32, no. 3, pp. 542-552, May 1994.
    • (1994) IEEE Trans. Geoscience and Remote Sensing , vol.32 , Issue.3 , pp. 542-552
    • Craig, M.1
  • 14
    • 23744456750 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts?
    • D. Donoho and V. Stodden, "When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts?" Proc. Advances in Neural Information Processing 16, 2003.
    • (2003) Proc. Advances in Neural Information Processing , vol.16
    • Donoho, D.1    Stodden, V.2
  • 16
    • 84862519707 scopus 로고    scopus 로고
    • A convex model for nonnegative matrix factorization and dimensionality reduction on physical space
    • July
    • E. Esser, M. Moller, S. Osher, G. Sapiro, and J. Xin, "A Convex Model for Nonnegative Matrix Factorization and Dimensionality Reduction on Physical Space," IEEE Trans. Image Processing, vol. 21, no. 7, pp. 3239-3252, July 2012.
    • (2012) IEEE Trans. Image Processing , vol.21 , Issue.7 , pp. 3239-3252
    • Esser, E.1    Moller, M.2    Osher, S.3    Sapiro, G.4    Xin, J.5
  • 17
    • 84870868704 scopus 로고    scopus 로고
    • Sparse and unique nonnegative matrix factorization through data preprocessing
    • N. Gillis, "Sparse and Unique Nonnegative Matrix Factorization through Data Preprocessing," J. Machine Learning Research, vol. 13, pp. 3349-3386, 2012.
    • (2012) J. Machine Learning Research , vol.13 , pp. 3349-3386
    • Gillis, N.1
  • 18
    • 84887361620 scopus 로고    scopus 로고
    • Robustness analysis of hottopixx, a linear programming model for factoring nonnegative matrices
    • N. Gillis, "Robustness Analysis of Hottopixx, a Linear Programming Model for Factoring Nonnegative Matrices," SIAM J. Matrix Analysis Applications, vol. 34, no. 3, pp. 1189-1212, 2013.
    • (2013) SIAM J. Matrix Analysis Applications , vol.34 , Issue.3 , pp. 1189-1212
    • Gillis, N.1
  • 23
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr.
    • J. Nascimento and J. Bioucas-Dias, "Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data," IEEE Trans. Geoscience and Remote Sensing, vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.1    Bioucas-Dias, J.2
  • 24
    • 1642290713 scopus 로고    scopus 로고
    • Automatic spectral target recognition in hyperspectral imagery
    • Oct.
    • H. Ren and C.-I. Chang, "Automatic Spectral Target Recognition in Hyperspectral Imagery," IEEE Trans. Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1232-1249, Oct. 2003.
    • (2003) IEEE Trans. Aerospace and Electronic Systems , vol.39 , Issue.4 , pp. 1232-1249
    • Ren, H.1    Chang, C.-I.2
  • 25
    • 80052705373 scopus 로고    scopus 로고
    • Underdetermined sparse blind source separation of nonnegative and partially overlapped data
    • Y. Sun and J. Xin, "Underdetermined Sparse Blind Source Separation of Nonnegative and Partially Overlapped Data," SIAM J. Scientific Computing, vol. 33, no. 4, pp. 2063-2094, 2011.
    • (2011) SIAM J. Scientific Computing , vol.33 , Issue.4 , pp. 2063-2094
    • Sun, Y.1    Xin, J.2
  • 26
    • 84856594021 scopus 로고    scopus 로고
    • Descriptive matrix factorization for sustainability adopting the principle of opposites
    • C. Thurau, K. Kersting, M. Wahabzada, and C. Bauckhage, "Descriptive Matrix Factorization for Sustainability Adopting the Principle of Opposites," Data Mining and Knowledge Discovery, vol. 24, pp. 325-354, 2012.
    • (2012) Data Mining and Knowledge Discovery , vol.24 , pp. 325-354
    • Thurau, C.1    Kersting, K.2    Wahabzada, M.3    Bauckhage, C.4
  • 27
    • 73249153369 scopus 로고    scopus 로고
    • On the complexity of nonnegative matrix factorization
    • S. Vavasis, "On the Complexity of Nonnegative Matrix Factorization," SIAM J. Optimization, vol. 20, no. 3, pp. 1364-1377, 2009.
    • (2009) SIAM J. Optimization , vol.20 , Issue.3 , pp. 1364-1377
    • Vavasis, S.1
  • 28
    • 0033310314 scopus 로고    scopus 로고
    • N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • M. Winter, "N-Findr: An Algorithm for Fast Autonomous Spectral End-Member Determination in Hyperspectral Data," Proc. SPIE Conf. Imaging Spectrometry V, vol. 3753, pp. 266-275, 1999.
    • (1999) Proc. SPIE Conf. Imaging Spectrometry v , vol.3753 , pp. 266-275
    • Winter, M.1
  • 29
    • 35948978952 scopus 로고    scopus 로고
    • A comparative study and analysis between vertex component analysis and orthogonal subspace projection for endmember extraction
    • C.-C. Wu,W. Liu, H. Ren, and C.-I. Chang, "A Comparative Study and Analysis between Vertex Component Analysis and Orthogonal Subspace Projection for Endmember Extraction," Proc. SPIE, vol. 6565, no. 1, p. 656523, 2007.
    • (2007) Proc. SPIE , vol.6565 , Issue.1 , pp. 656523
    • Wuw. Liu, C.-C.1    Ren, H.2    Chang, C.-I.3
  • 30
    • 40849094763 scopus 로고    scopus 로고
    • The successive projection algorithm (SPA), an algorithm with a spatial constraint for the automatic search of endmembers in hyperspectral data
    • J. Zhang, B. Rivard, and D. Rogge, "The Successive Projection Algorithm (SPA), an Algorithm with a Spatial Constraint for the Automatic Search of Endmembers in Hyperspectral Data," Sensors, vol. 8, no. 2, pp. 1321-1342, 2008.
    • (2008) Sensors , vol.8 , Issue.2 , pp. 1321-1342
    • Zhang, J.1    Rivard, B.2    Rogge, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.