-
1
-
-
80051658187
-
Two effective and computationally efficient pure-pixel based algorithms for hyperspectral endmember extraction
-
A. Ambikapathi, T.-H. Chan, C.-Y. Chi, and K. Keizer, "Two Effective and Computationally Efficient Pure-Pixel Based Algorithms for Hyperspectral Endmember Extraction," Proc. IEEE Int'l Conf. Acoustics, Speech and Signal Processing (ICASSP), pp. 1369-1372, 2011.
-
(2011)
Proc. IEEE Int'l Conf. Acoustics, Speech and Signal Processing (ICASSP)
, pp. 1369-1372
-
-
Ambikapathi, A.1
Chan, T.-H.2
Chi, C.-Y.3
Keizer, K.4
-
2
-
-
0035948747
-
The successive projections algorithm for variable selection in spectroscopic multicomponent analysis
-
U. Araujo, B. Saldanha, R. Galvao, T. Yoneyama, H. Chame, and V. Visani, "The Successive Projections Algorithm for Variable Selection in Spectroscopic Multicomponent Analysis," Chemometrics and Intelligent Laboratory Systems, vol. 57, no. 2, pp. 65-73, 2001.
-
(2001)
Chemometrics and Intelligent Laboratory Systems
, vol.57
, Issue.2
, pp. 65-73
-
-
Araujo, U.1
Saldanha, B.2
Galvao, R.3
Yoneyama, T.4
Chame, H.5
Visani, V.6
-
3
-
-
84862609231
-
Computing a nonnegative matrix factorization-provably
-
S. Arora, R. Ge, R. Kannan, and A. Moitra, "Computing a Nonnegative Matrix Factorization-Provably," Proc. 44th Symp. Theory of Computing (STOC '12), pp. 145-162, 2012.
-
(2012)
Proc. 44th Symp. Theory of Computing (STOC '12)
, pp. 145-162
-
-
Arora, S.1
Ge, R.2
Kannan, R.3
Moitra, A.4
-
4
-
-
84871960604
-
Learning topic models-going beyond SVD
-
S. Arora, R. Ge, and A. Moitra, "Learning Topic Models-Going Beyond SVD," Proc. 53rd Ann. IEEE Symp. Foundations of Computer Science (FOCS '12), pp. 1-10, 2012.
-
(2012)
Proc. 53rd Ann. IEEE Symp. Foundations of Computer Science (FOCS '12)
, pp. 1-10
-
-
Arora, S.1
Ge, R.2
Moitra, A.3
-
5
-
-
84861772901
-
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
-
Apr.
-
J. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot, "Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches," IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, vol. 5, no. 2, pp. 354-379, Apr. 2012.
-
(2012)
IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing
, vol.5
, Issue.2
, pp. 354-379
-
-
Bioucas-Dias, J.1
Plaza, A.2
Dobigeon, N.3
Parente, M.4
Du, Q.5
Gader, P.6
Chanussot, J.7
-
6
-
-
84877774066
-
Factoring nonnegative matrices with linear programs
-
V. Bittorf, B. Recht, E. Re, and J. Tropp, "Factoring Nonnegative Matrices with Linear Programs," Proc. Advances in Neural Information Processing Systems (NIPS '12), pp. 1223-1231, 2012.
-
(2012)
Proc. Advances in Neural Information Processing Systems (NIPS '12)
, pp. 1223-1231
-
-
Bittorf, V.1
Recht, B.2
Re, E.3
Tropp, J.4
-
8
-
-
0000673625
-
Linear least squares solutions by householder transformations
-
P. Businger and G. Golub, "Linear Least Squares Solutions by Householder Transformations," Numerische Mathematik, vol. 7, pp. 269-276, 1965.
-
(1965)
Numerische Mathematik
, vol.7
, pp. 269-276
-
-
Businger, P.1
Golub, G.2
-
9
-
-
78649910530
-
On selecting a maximum volume sub-matrix of a matrix and related problems
-
A. Çivril and M. Magdon-Ismail, "On Selecting a Maximum Volume Sub-Matrix of a Matrix and Related Problems," Theoretical Computer Science, vol. 410, no. 47-49, pp. 4801-4811, 2009.
-
(2009)
Theoretical Computer Science
, vol.410
, Issue.47-49
, pp. 4801-4811
-
-
Civril, A.1
Magdon-Ismail, M.2
-
10
-
-
84872617323
-
Exponential inapproximability of selecting a maximum volume sub-matrix
-
doi:10.1007/s00453-011-9582-6
-
A. Çivril and M. Magdon-Ismail, "Exponential Inapproximability of Selecting a Maximum Volume Sub-Matrix," Algorithmica, vol. 65, pp. 159-176, 2011, doi:10.1007/s00453-011-9582-6.
-
(2011)
Algorithmica
, vol.65
, pp. 159-176
-
-
Çivril, A.1
Magdon-Ismail, M.2
-
11
-
-
80455174042
-
A simplex volume maximization framework for hyperspectral endmember extraction
-
Nov.
-
T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, "A Simplex Volume Maximization Framework for Hyperspectral Endmember Extraction," IEEE Trans. Geoscience and Remote Sensing, vol. 49, no. 11, pp. 4177-4193, Nov. 2011.
-
(2011)
IEEE Trans. Geoscience and Remote Sensing
, vol.49
, Issue.11
, pp. 4177-4193
-
-
Chan, T.-H.1
Ma, W.-K.2
Ambikapathi, A.3
Chi, C.-Y.4
-
12
-
-
84887415911
-
A new growing method for simplex-based endmember extraction algorithm
-
Oct.
-
C.-I. Chang, C.-C. Wu, W.-M. Liu, and Y.-C. Ouyang, "A New Growing Method for Simplex-Based Endmember Extraction Algorithm," IEEE Trans. Geoscience and Remote Sensing, vol. 44, no. 10, pp. 2804-2819, Oct. 2006.
-
(2006)
IEEE Trans. Geoscience and Remote Sensing
, vol.44
, Issue.10
, pp. 2804-2819
-
-
Chang, C.-I.1
Wu, C.-C.2
Liu, W.-M.3
Ouyang, Y.-C.4
-
13
-
-
0028427066
-
Minimum-volume tranforms for remotely sensed data
-
May
-
M. Craig, "Minimum-Volume Tranforms for Remotely Sensed Data," IEEE Trans. Geoscience and Remote Sensing, vol. 32, no. 3, pp. 542-552, May 1994.
-
(1994)
IEEE Trans. Geoscience and Remote Sensing
, vol.32
, Issue.3
, pp. 542-552
-
-
Craig, M.1
-
14
-
-
23744456750
-
When does non-negative matrix factorization give a correct decomposition into parts?
-
D. Donoho and V. Stodden, "When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts?" Proc. Advances in Neural Information Processing 16, 2003.
-
(2003)
Proc. Advances in Neural Information Processing
, vol.16
-
-
Donoho, D.1
Stodden, V.2
-
16
-
-
84862519707
-
A convex model for nonnegative matrix factorization and dimensionality reduction on physical space
-
July
-
E. Esser, M. Moller, S. Osher, G. Sapiro, and J. Xin, "A Convex Model for Nonnegative Matrix Factorization and Dimensionality Reduction on Physical Space," IEEE Trans. Image Processing, vol. 21, no. 7, pp. 3239-3252, July 2012.
-
(2012)
IEEE Trans. Image Processing
, vol.21
, Issue.7
, pp. 3239-3252
-
-
Esser, E.1
Moller, M.2
Osher, S.3
Sapiro, G.4
Xin, J.5
-
17
-
-
84870868704
-
Sparse and unique nonnegative matrix factorization through data preprocessing
-
N. Gillis, "Sparse and Unique Nonnegative Matrix Factorization through Data Preprocessing," J. Machine Learning Research, vol. 13, pp. 3349-3386, 2012.
-
(2012)
J. Machine Learning Research
, vol.13
, pp. 3349-3386
-
-
Gillis, N.1
-
18
-
-
84887361620
-
Robustness analysis of hottopixx, a linear programming model for factoring nonnegative matrices
-
N. Gillis, "Robustness Analysis of Hottopixx, a Linear Programming Model for Factoring Nonnegative Matrices," SIAM J. Matrix Analysis Applications, vol. 34, no. 3, pp. 1189-1212, 2013.
-
(2013)
SIAM J. Matrix Analysis Applications
, vol.34
, Issue.3
, pp. 1189-1212
-
-
Gillis, N.1
-
23
-
-
16444373735
-
Vertex component analysis: A fast algorithm to unmix hyperspectral data
-
Apr.
-
J. Nascimento and J. Bioucas-Dias, "Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data," IEEE Trans. Geoscience and Remote Sensing, vol. 43, no. 4, pp. 898-910, Apr. 2005.
-
(2005)
IEEE Trans. Geoscience and Remote Sensing
, vol.43
, Issue.4
, pp. 898-910
-
-
Nascimento, J.1
Bioucas-Dias, J.2
-
24
-
-
1642290713
-
Automatic spectral target recognition in hyperspectral imagery
-
Oct.
-
H. Ren and C.-I. Chang, "Automatic Spectral Target Recognition in Hyperspectral Imagery," IEEE Trans. Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1232-1249, Oct. 2003.
-
(2003)
IEEE Trans. Aerospace and Electronic Systems
, vol.39
, Issue.4
, pp. 1232-1249
-
-
Ren, H.1
Chang, C.-I.2
-
25
-
-
80052705373
-
Underdetermined sparse blind source separation of nonnegative and partially overlapped data
-
Y. Sun and J. Xin, "Underdetermined Sparse Blind Source Separation of Nonnegative and Partially Overlapped Data," SIAM J. Scientific Computing, vol. 33, no. 4, pp. 2063-2094, 2011.
-
(2011)
SIAM J. Scientific Computing
, vol.33
, Issue.4
, pp. 2063-2094
-
-
Sun, Y.1
Xin, J.2
-
26
-
-
84856594021
-
Descriptive matrix factorization for sustainability adopting the principle of opposites
-
C. Thurau, K. Kersting, M. Wahabzada, and C. Bauckhage, "Descriptive Matrix Factorization for Sustainability Adopting the Principle of Opposites," Data Mining and Knowledge Discovery, vol. 24, pp. 325-354, 2012.
-
(2012)
Data Mining and Knowledge Discovery
, vol.24
, pp. 325-354
-
-
Thurau, C.1
Kersting, K.2
Wahabzada, M.3
Bauckhage, C.4
-
27
-
-
73249153369
-
On the complexity of nonnegative matrix factorization
-
S. Vavasis, "On the Complexity of Nonnegative Matrix Factorization," SIAM J. Optimization, vol. 20, no. 3, pp. 1364-1377, 2009.
-
(2009)
SIAM J. Optimization
, vol.20
, Issue.3
, pp. 1364-1377
-
-
Vavasis, S.1
-
28
-
-
0033310314
-
N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
-
M. Winter, "N-Findr: An Algorithm for Fast Autonomous Spectral End-Member Determination in Hyperspectral Data," Proc. SPIE Conf. Imaging Spectrometry V, vol. 3753, pp. 266-275, 1999.
-
(1999)
Proc. SPIE Conf. Imaging Spectrometry v
, vol.3753
, pp. 266-275
-
-
Winter, M.1
-
29
-
-
35948978952
-
A comparative study and analysis between vertex component analysis and orthogonal subspace projection for endmember extraction
-
C.-C. Wu,W. Liu, H. Ren, and C.-I. Chang, "A Comparative Study and Analysis between Vertex Component Analysis and Orthogonal Subspace Projection for Endmember Extraction," Proc. SPIE, vol. 6565, no. 1, p. 656523, 2007.
-
(2007)
Proc. SPIE
, vol.6565
, Issue.1
, pp. 656523
-
-
Wuw. Liu, C.-C.1
Ren, H.2
Chang, C.-I.3
-
30
-
-
40849094763
-
The successive projection algorithm (SPA), an algorithm with a spatial constraint for the automatic search of endmembers in hyperspectral data
-
J. Zhang, B. Rivard, and D. Rogge, "The Successive Projection Algorithm (SPA), an Algorithm with a Spatial Constraint for the Automatic Search of Endmembers in Hyperspectral Data," Sensors, vol. 8, no. 2, pp. 1321-1342, 2008.
-
(2008)
Sensors
, vol.8
, Issue.2
, pp. 1321-1342
-
-
Zhang, J.1
Rivard, B.2
Rogge, D.3
|