메뉴 건너뛰기




Volumn 33, Issue 6, 2011, Pages 3261-3281

Fast nonnegative matrix factorization: An active-set-like method and comparisons

Author keywords

Active set method; Block principal pivoting method; Dimension reduction; Lower rank approximation; Nonnegative matrix factorization; Nonnegativity constrained least squares

Indexed keywords

DATA MINING; MATRIX ALGEBRA; MATRIX FACTORIZATION; PROBLEM SOLVING;

EID: 84863012243     PISSN: 10648275     EISSN: None     Source Type: Journal    
DOI: 10.1137/110821172     Document Type: Article
Times cited : (288)

References (35)
  • 2
    • 0642334046 scopus 로고    scopus 로고
    • A fast non-negativity-constrained least squares algorithm
    • R. Bro and S. De Jong, A fast non-negativity-constrained least squares algorithm, J. Chemometrics, 11 (1997), pp. 393-401. (Pubitemid 127478570)
    • (1997) Journal of Chemometrics , vol.11 , Issue.5 , pp. 393-401
    • Bro, R.1    De Jong, S.2
  • 5
    • 74449093261 scopus 로고    scopus 로고
    • Fast local algorithms for large scale nonnegative matrix and tensor factorizations
    • A. Cichocki and A.-H. Phan, Fast local algorithms for large scale nonnegative matrix and tensor factorizations, IEICE Trans. Fundamentals Electron. Commun. Comput. Sci., E92-A (2009), pp. 708-721.
    • (2009) IEICE Trans. Fundamentals Electron. Commun. Comput. Sci. , vol.E92-A , pp. 708-721
    • Cichocki, A.1    Phan, A.-H.2
  • 8
    • 48249151183 scopus 로고    scopus 로고
    • Nonnegative matrix factorization: An analytical and interpretive tool in computational biology
    • K. Devarajan, Nonnegative matrix factorization: An analytical and interpretive tool in computational biology, PLoS Comput. Biol., 4 (2008), e1000029.
    • (2008) PLoS Comput. Biol. , vol.4
    • Devarajan, K.1
  • 9
    • 84864031935 scopus 로고    scopus 로고
    • Generalized nonnegative matrix approximations with Bregman divergences
    • Y. Weiss, B. Schölkopf, and J. Platt, eds., MIT Press, Cambridge, MA
    • I. Dhillon and S. Sra, Generalized nonnegative matrix approximations with Bregman divergences, in Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, eds., MIT Press, Cambridge, MA, 2006, pp. 283-290.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 283-290
    • Dhillon, I.1    Sra, S.2
  • 12
    • 0033904057 scopus 로고    scopus 로고
    • On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
    • DOI 10.1016/S0167-6377(99)00074-7
    • L. Grippo and M. Sciandrone, On the convergence of the block nonlinear Gauss-Seidel method under convex constraints, Oper. Res. Lett., 26 (2000), pp. 127-136. (Pubitemid 30564332)
    • (2000) Operations Research Letters , vol.26 , Issue.3 , pp. 127-136
    • Grippo, L.1    Sciandrone, M.2
  • 14
    • 0028434099 scopus 로고
    • A block principal pivoting algorithm for large-scale strictly monotone linear complementarity problems
    • J. J. Júdice and F. M. Pires, A block principal pivoting algorithm for large-scale strictly monotone linear complementarity problems, Comput. Oper. Res., 21 (1994), pp. 587-596.
    • (1994) Comput. Oper. Res. , vol.21 , pp. 587-596
    • Júdice, J.J.1    Pires, F.M.2
  • 16
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • DOI 10.1093/bioinformatics/btm134
    • H. Kim and H. Park, Sparse non-negative matrix factorizations via alternating non-negativityconstrained least squares for microarray data analysis, Bioinform., 23 (2007), pp. 1495-1502. (Pubitemid 47244474)
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 17
    • 67349093319 scopus 로고    scopus 로고
    • Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
    • H. Kim and H. Park, Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 713-730.
    • (2008) SIAM J. Matrix Anal. Appl. , vol.30 , pp. 713-730
    • Kim, H.1    Park, H.2
  • 20
    • 84862300386 scopus 로고    scopus 로고
    • Fast active-set-type algorithms for l1-regularized linear regression
    • Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS)
    • J. Kim and H. Park, Fast active-set-type algorithms for l1-regularized linear regression, in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS), J. Mach. Learning Res. W&CP, 9 (2010), pp. 397-404.
    • J. Mach. Learning Res. W&CP , vol.9 , Issue.2010 , pp. 397-404
    • Kim, J.1    Park, H.2
  • 22
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 401 (1999), pp. 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 23
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • MIT Press, Cambridge, MA
    • D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems 13, MIT Press, Cambridge, MA, 2001, pp. 556-562.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 24
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • C.-J. Lin, Projected gradient methods for nonnegative matrix factorization, Neural Comput., 19 (2007), pp. 2756-2779.
    • (2007) Neural Comput. , vol.19 , pp. 2756-2779
    • Lin, C.-J.1
  • 27
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5 (1994), pp. 111-126.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 28
    • 0030954231 scopus 로고    scopus 로고
    • Least squares formulation of robust non-negative factor analysis
    • DOI 10.1016/S0169-7439(96)00044-5, PII S0169743996000445
    • P. Paatero, Least squares formulation of robust non-negative factor analysis, Chemometrics Intell. Lab. Syst., 37 (1997), pp. 23-35. (Pubitemid 27242783)
    • (1997) Chemometrics and Intelligent Laboratory Systems , vol.37 , Issue.1 , pp. 23-35
    • Paatero, P.1
  • 29
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • DOI 10.1016/j.laa.2005.06.025, PII S002437950500340X
    • V. P. Pauca, J. Piper, and R. J. Plemmons, Nonnegative matrix factorization for spectral data analysis, Linear Algebra Appl., 416 (2006), pp. 29-47. (Pubitemid 43737212)
    • (2006) Linear Algebra and Its Applications , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 31
    • 84968502344 scopus 로고
    • A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables
    • L. F. Portugal, J. J. Judice, and L. N. Vicente, A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables, Math. Comp., 63 (1994), pp. 625-643.
    • (1994) Math. Comp. , vol.63 , pp. 625-643
    • Portugal, L.F.1    Judice, J.J.2    Vicente, L.N.3
  • 32
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996), pp. 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 33
    • 24944500827 scopus 로고    scopus 로고
    • Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems
    • DOI 10.1002/cem.889
    • M. H. Van Benthem and M. R. Keenan, Fast algorithm for the solution of large-scale nonnegativity-constrained least squares problems, J. Chemometrics, 18 (2004), pp. 441-450. (Pubitemid 41327531)
    • (2004) Journal of Chemometrics , vol.18 , Issue.10 , pp. 441-450
    • Van Benthem, M.H.1    Keenan, M.R.2
  • 34
    • 73249153369 scopus 로고    scopus 로고
    • On the complexity of nonnegative matrix factorization
    • S. A. Vavasis, On the complexity of nonnegative matrix factorization, SIAM J. Optim., 20 (2009), pp. 1364-1377.
    • (2009) SIAM J. Optim. , vol.20 , pp. 1364-1377
    • Vavasis, S.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.