-
1
-
-
0028561099
-
Positive matrix factorization: A non-negative factor model with optimal utilization of error
-
P. Paatero and U. Tapper, "Positive matrix factorization: A non-negative factor model with optimal utilization of error," Environmetrics, vol. 5, pp. 111-126, 1994.
-
(1994)
Environmetrics
, vol.5
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
2
-
-
0033592606
-
Learning the parts of objects by nonnegative matrix factorization
-
D. D. Lee and H. S. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, vol. 401, pp. 788-791, 1999.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
3
-
-
34547198396
-
Algorithms and applications for approximate nonnegative matrix factorization
-
to be published
-
M. Berry, M. Browne, A. Langville, P. Pauca, and R. Plemmon, "Algorithms and applications for approximate nonnegative matrix factorization," Comput. Statist. Data Anal., 2007, to be published.
-
(2007)
Comput. Statist. Data Anal
-
-
Berry, M.1
Browne, M.2
Langville, A.3
Pauca, P.4
Plemmon, R.5
-
4
-
-
84898964201
-
Algorithms for non-negative matrix factorization
-
T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press
-
D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization," in Advances in Neural Information Processing Systems 13, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press, 2001, pp. 556-562.
-
(2001)
Advances in Neural Information Processing Systems 13
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
5
-
-
35548969471
-
Projected gradient methods for non-negative matrix factorization
-
to be published
-
C.-J. Lin, "Projected gradient methods for non-negative matrix factorization," Neural Comput., 2007, to be published.
-
(2007)
Neural Comput
-
-
Lin, C.-J.1
-
6
-
-
34547433480
-
-
Dept. Comput. Appl. Math, Rice Univ, Houston, TX, Tech. Rep
-
E. F. Gonzales and Y. Zhang, "Accelerating the Lee-Seung algorithm for non-negative matrix factorization," Dept. Comput. Appl. Math., Rice Univ., Houston, TX, Tech. Rep., 2005.
-
(2005)
Accelerating the Lee-Seung algorithm for non-negative matrix factorization
-
-
Gonzales, E.F.1
Zhang, Y.2
-
7
-
-
7444224120
-
On reduced rank nonnegative matrix factorization for symmetric nonnegative matrices
-
M. Catral, L. Han, M. Neumann, and R. Plemmons, "On reduced rank nonnegative matrix factorization for symmetric nonnegative matrices," Linear Algebra Appl., vol. 393, pp. 107-126, 2004.
-
(2004)
Linear Algebra Appl
, vol.393
, pp. 107-126
-
-
Catral, M.1
Han, L.2
Neumann, M.3
Plemmons, R.4
-
8
-
-
36348940236
-
Theory, Numerical Methods Appl
-
Online. Available
-
M. Chu, F. Diele, R. Plemmons, and S. Ragni, Theory, Numerical Methods Appl. Nonnegative Matrix Factorization Tech. Rep., 2004 Online. Available: http://www.wfu.edu/~plemmons/papers/chue.pdf
-
(2004)
Nonnegative Matrix Factorization Tech. Rep
-
-
Chu, M.1
Diele, F.2
Plemmons, R.3
Ragni, S.4
-
9
-
-
33646910575
-
Nonnegative matrix factorization and I-divergence alternating minimization
-
L. Finesso and P. Spreij, "Nonnegative matrix factorization and I-divergence alternating minimization," Linear Algebra Appl., vol. 416, no. 2-3, pp. 270-287, 2006.
-
(2006)
Linear Algebra Appl
, vol.416
, Issue.2-3
, pp. 270-287
-
-
Finesso, L.1
Spreij, P.2
-
10
-
-
36348931977
-
-
D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA: Athena Scientific, 1999, pp. 02178-9998.
-
D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA: Athena Scientific, 1999, pp. 02178-9998.
-
-
-
-
12
-
-
35548934524
-
Object characterization from spectral data using nonnegative factorization and information theory
-
J. Piper, P. Pauca, R. Plemmons, and M. Giffin, "Object characterization from spectral data using nonnegative factorization and information theory," in Proc. AMOS Tech. Conf., 2004.
-
(2004)
Proc. AMOS Tech. Conf
-
-
Piper, J.1
Pauca, P.2
Plemmons, R.3
Giffin, M.4
-
13
-
-
84900510076
-
Non-negative matrix factorization with sparseness constraints
-
P. O. Hoyer, "Non-negative matrix factorization with sparseness constraints," J. Mach. Learn. Res., vol. 5, pp. 1457-1469, 2004.
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 1457-1469
-
-
Hoyer, P.O.1
|