-
1
-
-
84953836592
-
The end of gating? An introduction to automated analysis of high dimensional cytometry data
-
Mair F, Hartmann FJ, Mrdjen D, Tosevski V, Krieg C, Becher B. The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur J Immunol 2016;46:34–43.
-
(2016)
Eur J Immunol
, vol.46
, pp. 34-43
-
-
Mair, F.1
Hartmann, F.J.2
Mrdjen, D.3
Tosevski, V.4
Krieg, C.5
Becher, B.6
-
2
-
-
85006791053
-
Computational flow cytometry: Helping to make sense of high-dimensional immunology data
-
Saeys Y, Van Gassen S, Lambrecht BN. Computational flow cytometry: Helping to make sense of high-dimensional immunology data. Nat Rev Immunol 2016;1:14.
-
(2016)
Nat Rev Immunol
, vol.1
, pp. 14
-
-
Saeys, Y.1
Van Gassen, S.2
Lambrecht, B.N.3
-
4
-
-
79955750055
-
Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum
-
Bendall SC, Simonds EF, Qiu P, Amir ED, Krutzik PO, Finck R, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 2011;332:687–696.
-
(2011)
Science
, vol.332
, pp. 687-696
-
-
Bendall, S.C.1
Simonds, E.F.2
Qiu, P.3
Amir, E.D.4
Krutzik, P.O.5
Finck, R.6
-
5
-
-
84961288133
-
OpenCyto: An open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis
-
Finak G, Frelinger J, Jiang W, Newell EW, Ramey J, Davis MM, et al. OpenCyto: An open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput Biol 2014;10:e1003806.
-
(2014)
PLoS Comput Biol
, vol.10
-
-
Finak, G.1
Frelinger, J.2
Jiang, W.3
Newell, E.W.4
Ramey, J.5
Davis, M.M.6
-
6
-
-
84957539424
-
Standardizing flow cytometry immunophenotyping analysis from the human immunophenotyping consortium
-
Finak G, Langweiler M, Jaimes M, Malek M, Taghiyar J, Korin Y, et al. Standardizing flow cytometry immunophenotyping analysis from the human immunophenotyping consortium. Nat Sci Rep 2016;6:20686.
-
(2016)
Nat Sci Rep
, vol.6
, pp. 20686
-
-
Finak, G.1
Langweiler, M.2
Jaimes, M.3
Malek, M.4
Taghiyar, J.5
Korin, Y.6
-
7
-
-
84874666550
-
Critical assessment of automated flow cytometry data analysis techniques
-
Aghaeepour N, Finak G, Hoos H, Mosmann TR, Brinkman R, Gottardo R, et al. Critical assessment of automated flow cytometry data analysis techniques. Nat Methods 2013;10:228–238.
-
(2013)
Nat Methods
, vol.10
, pp. 228-238
-
-
Aghaeepour, N.1
Finak, G.2
Hoos, H.3
Mosmann, T.R.4
Brinkman, R.5
Gottardo, R.6
-
8
-
-
84957081995
-
A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes
-
Aghaeepour N, Chattopadhyay P, Chikina M, Dhaene T, Van Gassen S, Kursa M, et al. A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes. Cytometry Part A 2016;89A:16–21.
-
(2016)
Cytometry Part A
, vol.89A
, pp. 16-21
-
-
Aghaeepour, N.1
Chattopadhyay, P.2
Chikina, M.3
Dhaene, T.4
Van Gassen, S.5
Kursa, M.6
-
9
-
-
84999792441
-
High-dimensional single-cell analysis reveals the immune signature of narcolepsy
-
Hartmann FJ, Bernard-Valnet R, Quériault C, Mrdjen D, Weber LM, Galli E, et al. High-dimensional single-cell analysis reveals the immune signature of narcolepsy. J Exp Med 2016;213:2621–2633.
-
(2016)
J Exp Med
, vol.213
, pp. 2621-2633
-
-
Hartmann, F.J.1
Bernard-Valnet, R.2
Quériault, C.3
Mrdjen, D.4
Weber, L.M.5
Galli, E.6
-
10
-
-
84967144030
-
Mass cytometry of the human mucosal immune system identifies tissue- and disease-associated immune subsets
-
van Unen V, Li N, Molendijk I, Temurhan M, Höllt T, van der Meulen-de Jong AE, et al. Mass cytometry of the human mucosal immune system identifies tissue- and disease-associated immune subsets. Immunity 2016;44:1–13.
-
(2016)
Immunity
, vol.44
, pp. 1-13
-
-
van Unen, V.1
Li, N.2
Molendijk, I.3
Temurhan, M.4
Höllt, T.5
van der Meulen-de Jong, A.E.6
-
11
-
-
84975114095
-
Identification of vaccine-altered circulating B cell phenotypes using mass cytometry and a two-step clustering analysis
-
Pejoski D, Tchitchek N, Pozo AR, Elhmouzi-Younes J, Yousfi-Bogniaho R, Rogez-Kreuz C, et al. Identification of vaccine-altered circulating B cell phenotypes using mass cytometry and a two-step clustering analysis. J Immunol 2016; 4814–4831.
-
(2016)
J Immunol
, pp. 4814-4831
-
-
Pejoski, D.1
Tchitchek, N.2
Pozo, A.R.3
Elhmouzi-Younes, J.4
Yousfi-Bogniaho, R.5
Rogez-Kreuz, C.6
-
12
-
-
84974809055
-
Avoiding common pitfalls when clustering biological data
-
Ronan T, Qi Z, Naegle KM. Avoiding common pitfalls when clustering biological data. Sci Signal 2016;9:re6.
-
(2016)
Sci Signal
, vol.9
, pp. re6
-
-
Ronan, T.1
Qi, Z.2
Naegle, K.M.3
-
13
-
-
67149084291
-
Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
-
Kriegel HP, Kröger P, Zimek A. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowledge Discov Data 2009;3:1–58.
-
(2009)
ACM Trans Knowledge Discov Data
, vol.3
, pp. 1-58
-
-
Kriegel, H.P.1
Kröger, P.2
Zimek, A.3
-
14
-
-
84979626629
-
Mass cytometry: Blessed with the curse of dimensionality
-
Newell EW, Cheng Y. Mass cytometry: Blessed with the curse of dimensionality. Nat Immunol 2016;17:890–895.
-
(2016)
Nat Immunol
, vol.17
, pp. 890-895
-
-
Newell, E.W.1
Cheng, Y.2
-
15
-
-
84937685382
-
Algorithmic tools for mining high-dimensional cytometry data
-
Chester C, Maecker HT. Algorithmic tools for mining high-dimensional cytometry data. J Immunol 2015;195:773–779.
-
(2015)
J Immunol
, vol.195
, pp. 773-779
-
-
Chester, C.1
Maecker, H.T.2
-
16
-
-
84983121572
-
Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data
-
Diggins KE, Ferrell PBJ, Irish JM. Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data. Methods 2015;82:55–63.
-
(2015)
Methods
, vol.82
, pp. 55-63
-
-
Diggins, K.E.1
Ferrell, P.B.J.2
Irish, J.M.3
-
17
-
-
84968624557
-
Automated mapping of phenotype space with single-cell data
-
Samusik N, Good Z, Spitzer MH, Davis KL, Nolan GP. Automated mapping of phenotype space with single-cell data. Nat Methods 2016; 1–4.
-
(2016)
Nat Methods
, pp. 1-4
-
-
Samusik, N.1
Good, Z.2
Spitzer, M.H.3
Davis, K.L.4
Nolan, G.P.5
-
18
-
-
84934442835
-
Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
-
Levine JH, Simonds EF, Bendall SC, Davis KL, Amir ED, Tadmor MD, et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 2015;162:184–197.
-
(2015)
Cell
, vol.162
, pp. 184-197
-
-
Levine, J.H.1
Simonds, E.F.2
Bendall, S.C.3
Davis, K.L.4
Amir, E.D.5
Tadmor, M.D.6
-
19
-
-
84946487753
-
Comparing the performance of biomedical clustering methods
-
Wiwie C, Baumbach J, Röttger R. Comparing the performance of biomedical clustering methods. Nat Methods 2015;12:1033–1038.
-
(2015)
Nat Methods
, vol.12
, pp. 1033-1038
-
-
Wiwie, C.1
Baumbach, J.2
Röttger, R.3
-
20
-
-
27544491443
-
A CLUE for CLUster Ensembles
-
Hornik K. A CLUE for CLUster Ensembles. J Stat Software 2005;14.
-
(2005)
J Stat Software
, vol.14
-
-
Hornik, K.1
-
21
-
-
84865423616
-
FlowRepository: A resource of annotated flow cytometry datasets associated with peer-reviewed publications
-
Spidlen J, Breuer K, Rosenberg C, Kotecha N, Brinkman RR. FlowRepository: A resource of annotated flow cytometry datasets associated with peer-reviewed publications. Cytometry Part A 2012;81A:727–731.
-
(2012)
Cytometry Part A
, vol.81A
, pp. 727-731
-
-
Spidlen, J.1
Breuer, K.2
Rosenberg, C.3
Kotecha, N.4
Brinkman, R.R.5
-
22
-
-
84891956083
-
Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE)
-
Shekhar K, Brodin P, Davis MM, Chakraborty AK. Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc Natl Acad Sci U S A 2014;111:202–207.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 202-207
-
-
Shekhar, K.1
Brodin, P.2
Davis, M.M.3
Chakraborty, A.K.4
-
23
-
-
84989347290
-
Cytofkit: A Bioconductor package for an integrated mass cytometry data analysis pipeline
-
Chen H, Lau MC, Wong MT, Newell EW, Poidinger M., Chen J. Cytofkit: A Bioconductor package for an integrated mass cytometry data analysis pipeline. PLOS Comput Biol 2016;12(9).
-
(2016)
PLOS Comput Biol
, vol.12
, Issue.9
-
-
Chen, H.1
Lau, M.C.2
Wong, M.T.3
Newell, E.W.4
Poidinger, M.5
Chen, J.6
-
24
-
-
84911016319
-
High-dimensional analysis of the murine myeloid cell system
-
Becher B, Schlitzer A, Chen J, Mair F, Sumatoh HR, Wei K, et al. High-dimensional analysis of the murine myeloid cell system. Nat Immunol 2014;15:1181–1189.
-
(2014)
Nat Immunol
, vol.15
, pp. 1181-1189
-
-
Becher, B.1
Schlitzer, A.2
Chen, J.3
Mair, F.4
Sumatoh, H.R.5
Wei, K.6
-
25
-
-
77956565464
-
Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data
-
Qian Y, Wei C, Lee FEH, Campbell J, Halliley J, Lee J, et al. Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry Part B—Clin Cytometry 2010;78B(Suppl. 1):S69–S82.
-
(2010)
Cytometry Part B—Clin Cytometry
, vol.78BSuppl. 1
, pp. S69-S82
-
-
Qian, Y.1
Wei, C.2
Lee, F.E.H.3
Campbell, J.4
Halliley, J.5
Lee, J.6
-
26
-
-
67649488081
-
flowClust: A Bioconductor package for automated gating of flow cytometry data
-
Lo K, Hahne F, Brinkman RR, Gottardo R. flowClust: A Bioconductor package for automated gating of flow cytometry data. BMC Bioinform 2009;10:145.
-
(2009)
BMC Bioinform
, vol.10
, pp. 145
-
-
Lo, K.1
Hahne, F.2
Brinkman, R.R.3
Gottardo, R.4
-
28
-
-
77949555869
-
Merging mixture components for cell population identification in flow cytometry
-
Finak G, Bashashati A, Brinkman R, Gottardo R. Merging mixture components for cell population identification in flow cytometry. Adv Bioinform 2009; 247646.
-
(2009)
Adv Bioinform
, pp. 247646
-
-
Finak, G.1
Bashashati, A.2
Brinkman, R.3
Gottardo, R.4
-
29
-
-
84865139571
-
flowPeaks: A fast unsupervised clustering for flow cytometry data via K-means and density peak finding
-
Ge Y, Sealfon SC. flowPeaks: A fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Bioinformatics 2012;28:2052–2058.
-
(2012)
Bioinformatics
, vol.28
, pp. 2052-2058
-
-
Ge, Y.1
Sealfon, S.C.2
-
30
-
-
84932198501
-
FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data
-
Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, et al. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytometry Part A 2015;87A:636–645.
-
(2015)
Cytometry Part A
, vol.87A
, pp. 636-645
-
-
Van Gassen, S.1
Callebaut, B.2
Van Helden, M.J.3
Lambrecht, B.N.4
Demeester, P.5
Dhaene, T.6
-
31
-
-
84932194111
-
immunoClust—An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets
-
Sörensen T, Baumgart S, Durek P, Grützkau A, Häupl T. immunoClust—An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. Cytometry Part A 2015;87A:603–615.
-
(2015)
Cytometry Part A
, vol.87A
, pp. 603-615
-
-
Sörensen, T.1
Baumgart, S.2
Durek, P.3
Grützkau, A.4
Häupl, T.5
-
32
-
-
85006743553
-
-
Rcluster Linkable C++ clustering. R package version 0.2.3.;
-
Linderman M. Rclusterpp: Linkable C++ clustering. R package version 0.2.3.; 2013.
-
(2013)
-
-
Linderman, M.1
-
33
-
-
77954938186
-
Data reduction for spectral clustering to analyze high throughput flow cytometry data
-
Zare H, Shooshtari P, Gupta A, Brinkman RR. Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinform 2010;11:403.
-
(2010)
BMC Bioinform
, vol.11
, pp. 403
-
-
Zare, H.1
Shooshtari, P.2
Gupta, A.3
Brinkman, R.R.4
-
34
-
-
80054768631
-
Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE
-
Qiu P, Simonds EF, Bendall SC, Gibbs KD, Bruggner RV, Linderman MD, et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 2011;29:886–891.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 886-891
-
-
Qiu, P.1
Simonds, E.F.2
Bendall, S.C.3
Gibbs, K.D.4
Bruggner, R.V.5
Linderman, M.D.6
-
35
-
-
84899129003
-
SWIFT—Scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, Part 2: Biological evaluation
-
Mosmann TR, Naim I, Rebhahn J, Datta S, Cavenaugh JS, Weaver JM, et al. SWIFT—Scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, Part 2: Biological evaluation. Cytometry Part A 2014;85A:422–433.
-
(2014)
Cytometry Part A
, vol.85A
, pp. 422-433
-
-
Mosmann, T.R.1
Naim, I.2
Rebhahn, J.3
Datta, S.4
Cavenaugh, J.S.5
Weaver, J.M.6
-
36
-
-
84881026735
-
Frequency determination of rare populations by flow cytometry: A hematopoietic stem cell perspective
-
Nilsson AR, Bryder D, Pronk CJH. Frequency determination of rare populations by flow cytometry: A hematopoietic stem cell perspective. Cytometry Part A 2013;83A:721–727.
-
(2013)
Cytometry Part A
, vol.83A
, pp. 721-727
-
-
Nilsson, A.R.1
Bryder, D.2
Pronk, C.J.H.3
-
37
-
-
84961289551
-
Orchestrating high-throughput genomic analysis with Bioconductor
-
Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 2015;12:115–121.
-
(2015)
Nat Methods
, vol.12
, pp. 115-121
-
-
Huber, W.1
Carey, V.J.2
Gentleman, R.3
Anders, S.4
Carlson, M.5
Carvalho, B.S.6
|