메뉴 건너뛰기




Volumn 89, Issue 12, 2016, Pages 1084-1096

Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data

Author keywords

bioinformatics; cell populations; clustering; CyTOF; F1 score; flow cytometry; high dimensional; manual gating; mass cytometry; single cell

Indexed keywords

ALGORITHM; BIOLOGY; CLUSTER ANALYSIS; COMPARATIVE STUDY; FLOW CYTOMETRY; HUMAN; MATRIX-ASSISTED LASER DESORPTION-IONIZATION MASS SPECTROMETRY; PROCEDURES;

EID: 85006826083     PISSN: 15524922     EISSN: 15524930     Source Type: Journal    
DOI: 10.1002/cyto.a.23030     Document Type: Article
Times cited : (295)

References (37)
  • 1
    • 84953836592 scopus 로고    scopus 로고
    • The end of gating? An introduction to automated analysis of high dimensional cytometry data
    • Mair F, Hartmann FJ, Mrdjen D, Tosevski V, Krieg C, Becher B. The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur J Immunol 2016;46:34–43.
    • (2016) Eur J Immunol , vol.46 , pp. 34-43
    • Mair, F.1    Hartmann, F.J.2    Mrdjen, D.3    Tosevski, V.4    Krieg, C.5    Becher, B.6
  • 2
    • 85006791053 scopus 로고    scopus 로고
    • Computational flow cytometry: Helping to make sense of high-dimensional immunology data
    • Saeys Y, Van Gassen S, Lambrecht BN. Computational flow cytometry: Helping to make sense of high-dimensional immunology data. Nat Rev Immunol 2016;1:14.
    • (2016) Nat Rev Immunol , vol.1 , pp. 14
    • Saeys, Y.1    Van Gassen, S.2    Lambrecht, B.N.3
  • 4
    • 79955750055 scopus 로고    scopus 로고
    • Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum
    • Bendall SC, Simonds EF, Qiu P, Amir ED, Krutzik PO, Finck R, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 2011;332:687–696.
    • (2011) Science , vol.332 , pp. 687-696
    • Bendall, S.C.1    Simonds, E.F.2    Qiu, P.3    Amir, E.D.4    Krutzik, P.O.5    Finck, R.6
  • 5
    • 84961288133 scopus 로고    scopus 로고
    • OpenCyto: An open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis
    • Finak G, Frelinger J, Jiang W, Newell EW, Ramey J, Davis MM, et al. OpenCyto: An open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput Biol 2014;10:e1003806.
    • (2014) PLoS Comput Biol , vol.10
    • Finak, G.1    Frelinger, J.2    Jiang, W.3    Newell, E.W.4    Ramey, J.5    Davis, M.M.6
  • 6
    • 84957539424 scopus 로고    scopus 로고
    • Standardizing flow cytometry immunophenotyping analysis from the human immunophenotyping consortium
    • Finak G, Langweiler M, Jaimes M, Malek M, Taghiyar J, Korin Y, et al. Standardizing flow cytometry immunophenotyping analysis from the human immunophenotyping consortium. Nat Sci Rep 2016;6:20686.
    • (2016) Nat Sci Rep , vol.6 , pp. 20686
    • Finak, G.1    Langweiler, M.2    Jaimes, M.3    Malek, M.4    Taghiyar, J.5    Korin, Y.6
  • 8
    • 84957081995 scopus 로고    scopus 로고
    • A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes
    • Aghaeepour N, Chattopadhyay P, Chikina M, Dhaene T, Van Gassen S, Kursa M, et al. A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes. Cytometry Part A 2016;89A:16–21.
    • (2016) Cytometry Part A , vol.89A , pp. 16-21
    • Aghaeepour, N.1    Chattopadhyay, P.2    Chikina, M.3    Dhaene, T.4    Van Gassen, S.5    Kursa, M.6
  • 10
    • 84967144030 scopus 로고    scopus 로고
    • Mass cytometry of the human mucosal immune system identifies tissue- and disease-associated immune subsets
    • van Unen V, Li N, Molendijk I, Temurhan M, Höllt T, van der Meulen-de Jong AE, et al. Mass cytometry of the human mucosal immune system identifies tissue- and disease-associated immune subsets. Immunity 2016;44:1–13.
    • (2016) Immunity , vol.44 , pp. 1-13
    • van Unen, V.1    Li, N.2    Molendijk, I.3    Temurhan, M.4    Höllt, T.5    van der Meulen-de Jong, A.E.6
  • 11
    • 84975114095 scopus 로고    scopus 로고
    • Identification of vaccine-altered circulating B cell phenotypes using mass cytometry and a two-step clustering analysis
    • Pejoski D, Tchitchek N, Pozo AR, Elhmouzi-Younes J, Yousfi-Bogniaho R, Rogez-Kreuz C, et al. Identification of vaccine-altered circulating B cell phenotypes using mass cytometry and a two-step clustering analysis. J Immunol 2016; 4814–4831.
    • (2016) J Immunol , pp. 4814-4831
    • Pejoski, D.1    Tchitchek, N.2    Pozo, A.R.3    Elhmouzi-Younes, J.4    Yousfi-Bogniaho, R.5    Rogez-Kreuz, C.6
  • 12
    • 84974809055 scopus 로고    scopus 로고
    • Avoiding common pitfalls when clustering biological data
    • Ronan T, Qi Z, Naegle KM. Avoiding common pitfalls when clustering biological data. Sci Signal 2016;9:re6.
    • (2016) Sci Signal , vol.9 , pp. re6
    • Ronan, T.1    Qi, Z.2    Naegle, K.M.3
  • 13
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • Kriegel HP, Kröger P, Zimek A. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowledge Discov Data 2009;3:1–58.
    • (2009) ACM Trans Knowledge Discov Data , vol.3 , pp. 1-58
    • Kriegel, H.P.1    Kröger, P.2    Zimek, A.3
  • 14
    • 84979626629 scopus 로고    scopus 로고
    • Mass cytometry: Blessed with the curse of dimensionality
    • Newell EW, Cheng Y. Mass cytometry: Blessed with the curse of dimensionality. Nat Immunol 2016;17:890–895.
    • (2016) Nat Immunol , vol.17 , pp. 890-895
    • Newell, E.W.1    Cheng, Y.2
  • 15
    • 84937685382 scopus 로고    scopus 로고
    • Algorithmic tools for mining high-dimensional cytometry data
    • Chester C, Maecker HT. Algorithmic tools for mining high-dimensional cytometry data. J Immunol 2015;195:773–779.
    • (2015) J Immunol , vol.195 , pp. 773-779
    • Chester, C.1    Maecker, H.T.2
  • 16
    • 84983121572 scopus 로고    scopus 로고
    • Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data
    • Diggins KE, Ferrell PBJ, Irish JM. Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data. Methods 2015;82:55–63.
    • (2015) Methods , vol.82 , pp. 55-63
    • Diggins, K.E.1    Ferrell, P.B.J.2    Irish, J.M.3
  • 18
    • 84934442835 scopus 로고    scopus 로고
    • Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
    • Levine JH, Simonds EF, Bendall SC, Davis KL, Amir ED, Tadmor MD, et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 2015;162:184–197.
    • (2015) Cell , vol.162 , pp. 184-197
    • Levine, J.H.1    Simonds, E.F.2    Bendall, S.C.3    Davis, K.L.4    Amir, E.D.5    Tadmor, M.D.6
  • 19
    • 84946487753 scopus 로고    scopus 로고
    • Comparing the performance of biomedical clustering methods
    • Wiwie C, Baumbach J, Röttger R. Comparing the performance of biomedical clustering methods. Nat Methods 2015;12:1033–1038.
    • (2015) Nat Methods , vol.12 , pp. 1033-1038
    • Wiwie, C.1    Baumbach, J.2    Röttger, R.3
  • 20
    • 27544491443 scopus 로고    scopus 로고
    • A CLUE for CLUster Ensembles
    • Hornik K. A CLUE for CLUster Ensembles. J Stat Software 2005;14.
    • (2005) J Stat Software , vol.14
    • Hornik, K.1
  • 21
    • 84865423616 scopus 로고    scopus 로고
    • FlowRepository: A resource of annotated flow cytometry datasets associated with peer-reviewed publications
    • Spidlen J, Breuer K, Rosenberg C, Kotecha N, Brinkman RR. FlowRepository: A resource of annotated flow cytometry datasets associated with peer-reviewed publications. Cytometry Part A 2012;81A:727–731.
    • (2012) Cytometry Part A , vol.81A , pp. 727-731
    • Spidlen, J.1    Breuer, K.2    Rosenberg, C.3    Kotecha, N.4    Brinkman, R.R.5
  • 22
    • 84891956083 scopus 로고    scopus 로고
    • Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE)
    • Shekhar K, Brodin P, Davis MM, Chakraborty AK. Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc Natl Acad Sci U S A 2014;111:202–207.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 202-207
    • Shekhar, K.1    Brodin, P.2    Davis, M.M.3    Chakraborty, A.K.4
  • 23
    • 84989347290 scopus 로고    scopus 로고
    • Cytofkit: A Bioconductor package for an integrated mass cytometry data analysis pipeline
    • Chen H, Lau MC, Wong MT, Newell EW, Poidinger M., Chen J. Cytofkit: A Bioconductor package for an integrated mass cytometry data analysis pipeline. PLOS Comput Biol 2016;12(9).
    • (2016) PLOS Comput Biol , vol.12 , Issue.9
    • Chen, H.1    Lau, M.C.2    Wong, M.T.3    Newell, E.W.4    Poidinger, M.5    Chen, J.6
  • 25
    • 77956565464 scopus 로고    scopus 로고
    • Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data
    • Qian Y, Wei C, Lee FEH, Campbell J, Halliley J, Lee J, et al. Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry Part B—Clin Cytometry 2010;78B(Suppl. 1):S69–S82.
    • (2010) Cytometry Part B—Clin Cytometry , vol.78BSuppl. 1 , pp. S69-S82
    • Qian, Y.1    Wei, C.2    Lee, F.E.H.3    Campbell, J.4    Halliley, J.5    Lee, J.6
  • 26
    • 67649488081 scopus 로고    scopus 로고
    • flowClust: A Bioconductor package for automated gating of flow cytometry data
    • Lo K, Hahne F, Brinkman RR, Gottardo R. flowClust: A Bioconductor package for automated gating of flow cytometry data. BMC Bioinform 2009;10:145.
    • (2009) BMC Bioinform , vol.10 , pp. 145
    • Lo, K.1    Hahne, F.2    Brinkman, R.R.3    Gottardo, R.4
  • 28
    • 77949555869 scopus 로고    scopus 로고
    • Merging mixture components for cell population identification in flow cytometry
    • Finak G, Bashashati A, Brinkman R, Gottardo R. Merging mixture components for cell population identification in flow cytometry. Adv Bioinform 2009; 247646.
    • (2009) Adv Bioinform , pp. 247646
    • Finak, G.1    Bashashati, A.2    Brinkman, R.3    Gottardo, R.4
  • 29
    • 84865139571 scopus 로고    scopus 로고
    • flowPeaks: A fast unsupervised clustering for flow cytometry data via K-means and density peak finding
    • Ge Y, Sealfon SC. flowPeaks: A fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Bioinformatics 2012;28:2052–2058.
    • (2012) Bioinformatics , vol.28 , pp. 2052-2058
    • Ge, Y.1    Sealfon, S.C.2
  • 31
    • 84932194111 scopus 로고    scopus 로고
    • immunoClust—An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets
    • Sörensen T, Baumgart S, Durek P, Grützkau A, Häupl T. immunoClust—An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. Cytometry Part A 2015;87A:603–615.
    • (2015) Cytometry Part A , vol.87A , pp. 603-615
    • Sörensen, T.1    Baumgart, S.2    Durek, P.3    Grützkau, A.4    Häupl, T.5
  • 32
    • 85006743553 scopus 로고    scopus 로고
    • Rcluster Linkable C++ clustering. R package version 0.2.3.;
    • Linderman M. Rclusterpp: Linkable C++ clustering. R package version 0.2.3.; 2013.
    • (2013)
    • Linderman, M.1
  • 33
    • 77954938186 scopus 로고    scopus 로고
    • Data reduction for spectral clustering to analyze high throughput flow cytometry data
    • Zare H, Shooshtari P, Gupta A, Brinkman RR. Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinform 2010;11:403.
    • (2010) BMC Bioinform , vol.11 , pp. 403
    • Zare, H.1    Shooshtari, P.2    Gupta, A.3    Brinkman, R.R.4
  • 35
    • 84899129003 scopus 로고    scopus 로고
    • SWIFT—Scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, Part 2: Biological evaluation
    • Mosmann TR, Naim I, Rebhahn J, Datta S, Cavenaugh JS, Weaver JM, et al. SWIFT—Scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, Part 2: Biological evaluation. Cytometry Part A 2014;85A:422–433.
    • (2014) Cytometry Part A , vol.85A , pp. 422-433
    • Mosmann, T.R.1    Naim, I.2    Rebhahn, J.3    Datta, S.4    Cavenaugh, J.S.5    Weaver, J.M.6
  • 36
    • 84881026735 scopus 로고    scopus 로고
    • Frequency determination of rare populations by flow cytometry: A hematopoietic stem cell perspective
    • Nilsson AR, Bryder D, Pronk CJH. Frequency determination of rare populations by flow cytometry: A hematopoietic stem cell perspective. Cytometry Part A 2013;83A:721–727.
    • (2013) Cytometry Part A , vol.83A , pp. 721-727
    • Nilsson, A.R.1    Bryder, D.2    Pronk, C.J.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.