메뉴 건너뛰기




Volumn 9, Issue 1, 2018, Pages

BEARscc determines robustness of single-cell clusters using simulated technical replicates

Author keywords

[No Author keywords available]

Indexed keywords

MESSENGER RNA; RNA;

EID: 85044318374     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-018-03608-y     Document Type: Article
Times cited : (11)

References (20)
  • 1
    • 84941201582 scopus 로고    scopus 로고
    • Single-cell messenger RNA sequencing reveals rare intestinal cell types
    • Grün, D. et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525, 251-255 (2015).
    • (2015) Nature , vol.525 , pp. 251-255
    • Grün, D.1
  • 2
    • 84994860357 scopus 로고    scopus 로고
    • Revealing the vectors of cellular identity with single-cell genomics
    • Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145-1160 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 1145-1160
    • Wagner, A.1    Regev, A.2    Yosef, N.3
  • 3
    • 84963614956 scopus 로고    scopus 로고
    • Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
    • Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189-196 (2016).
    • (2016) Science , vol.352 , pp. 189-196
    • Tirosh, I.1
  • 4
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grün, D., Kester, L. & van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637-640 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 637-640
    • Grün, D.1    Kester, L.2    Van Oudenaarden, A.3
  • 5
    • 84944901262 scopus 로고    scopus 로고
    • Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
    • Kim, J. K., Kolodziejczyk, A. A., Illicic, T., Teichmann, S. A. & Marioni, J. C. Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat. Commun. 6, 8687-8688 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 8687-8688
    • Kim, J.K.1    Kolodziejczyk, A.A.2    Illicic, T.3    Teichmann, S.A.4    Marioni, J.C.5
  • 7
    • 80052521697 scopus 로고    scopus 로고
    • Synthetic spike-in standards for RNA-seq experiments
    • Jiang, L. et al. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 21, 1543-1551 (2011).
    • (2011) Genome Res. , vol.21 , pp. 1543-1551
    • Jiang, L.1
  • 8
    • 84953226880 scopus 로고    scopus 로고
    • BASiCS: Bayesian analysis of single-cell sequencing data
    • Vallejos, C. A., Marioni, J. C. & Richardson, S. BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Comput. Biol. 11, e1004333-18 (2015).
    • (2015) PLoS Comput. Biol. , vol.11 , pp. e1004333-e1004418
    • Vallejos, C.A.1    Marioni, J.C.2    Richardson, S.3
  • 9
    • 84887109584 scopus 로고    scopus 로고
    • Accounting for technical noise in single-cell RNA-seq experiments
    • Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093-1095 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 1093-1095
    • Brennecke, P.1
  • 10
    • 84990895380 scopus 로고    scopus 로고
    • De novo prediction of stem cell identity using single-cell transcriptome data
    • Grün, D. et al. De novo prediction of stem cell identity using single-cell transcriptome data. Stem Cell 19, 266-277 (2016).
    • (2016) Stem Cell , vol.19 , pp. 266-277
    • Grün, D.1
  • 11
    • 84924565530 scopus 로고    scopus 로고
    • Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138-1142 (2015).
    • (2015) Science , vol.347 , pp. 1138-1142
    • Zeisel, A.1
  • 12
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53-65 (1987).
    • (1987) J. Comput. Appl. Math. , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 14
    • 85016121177 scopus 로고    scopus 로고
    • SC3: Consensus clustering of single-cell RNA-seq data
    • Kiselev, V. Y. et al. SC3: Consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483-486 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 483-486
    • Kiselev, V.Y.1
  • 16
    • 78651301328 scopus 로고    scopus 로고
    • International Nucleotide Sequence Database Collaboration. the sequence read archive
    • Leinonen, R., Sugawara, H. & Shumway, M. International Nucleotide Sequence Database Collaboration. The sequence read archive. Nucleic Acids Res. 39, D19-D21 (2011).
    • (2011) Nucleic Acids Res. , vol.39 , pp. D19-D21
    • Leinonen, R.1    Sugawara, H.2    Shumway, M.3
  • 17
    • 84871809302 scopus 로고    scopus 로고
    • STAR: Ultrafast universal RNA-seq aligner
    • Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 15-21
    • Dobin, A.1
  • 18
    • 28744458859 scopus 로고    scopus 로고
    • Bioconductor: Open software development for computational biology and bioinformatics
    • Gentleman, R. C. et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).
    • (2004) Genome Biol. , vol.5 , pp. R80
    • Gentleman, R.C.1
  • 19
    • 84891677425 scopus 로고    scopus 로고
    • Full-length RNA-seq from single cells using Smart-seq2
    • Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171-181 (2014).
    • (2014) Nat. Protoc. , vol.9 , pp. 171-181
    • Picelli, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.