-
2
-
-
85060523173
-
A review on hybrid empirical mode decomposition models for wind speed and wind power prediction
-
Bokde, N.; Feijóo, A. A Review on Hybrid Empirical Mode Decomposition Models for Wind Speed and Wind Power Prediction. Energies 2019, 12, 254. [CrossRef]
-
(2019)
Energies
, vol.12
, pp. 254
-
-
Bokde, N.1
Feijóo, A.2
-
3
-
-
85015062092
-
Novel cost model for balancing wind power forecasting uncertainty
-
Yan, J.; Liu, Y.; Li, F.; Gu, C. Novel Cost Model for Balancing Wind Power Forecasting Uncertainty. IEEE Trans. Energy Convers. 2017, 32, 318–329. [CrossRef]
-
(2017)
IEEE Trans. Energy Convers.
, vol.32
, pp. 318-329
-
-
Yan, J.1
Liu, Y.2
Li, F.3
Gu, C.4
-
4
-
-
84887788957
-
Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization
-
Chang, W.; Ming, Y.; Chang, P.; Ke, Y.-C.; Chung, V. Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization. Int. J. Electr. Power Energy Syst. 2014, 55, 741–748.
-
(2014)
Int. J. Electr. Power Energy Syst.
, vol.55
, pp. 741-748
-
-
Chang, W.1
Ming, Y.2
Chang, P.3
Ke, Y.-C.4
Chung, V.5
-
5
-
-
85041834580
-
Robust approach to detection of bubbles based on images analysis
-
Nguyen, H.T.; Nguyen, T.H.; Dreglea, A.I. Robust approach to detection of bubbles based on images analysis. Int. J. Artif. Intell. 2018, 16, 167–177.
-
(2018)
Int. J. Artif. Intell.
, vol.16
, pp. 167-177
-
-
Nguyen, H.T.1
Nguyen, T.H.2
Dreglea, A.I.3
-
6
-
-
85058645173
-
Monitoring of combustion regimes based on the visualization of the flame and machine learning
-
Tokarev, M.P.; Abdurakipov, S.S.; Gobyzov, O.A.; Seredkin, A.V.; Dulin, V.M. Monitoring of combustion regimes based on the visualization of the flame and machine learning. J. Phys. Conf. Ser. 2018, 1128, 012138. [CrossRef]
-
(2018)
J. Phys. Conf. Ser.
, vol.1128
, pp. 012138
-
-
Tokarev, M.P.1
Abdurakipov, S.S.2
Gobyzov, O.A.3
Seredkin, A.V.4
Dulin, V.M.5
-
7
-
-
85044348039
-
Machine learning algorithms application to road defects classification
-
Nguyen, H.T.; Nguyen, T.H.; Sidorov, D.; Dreglea, A. Machine learning algorithms application to road defects classification. Intell. Decis. Technol. 2018, 12, 59–66. [CrossRef]
-
(2018)
Intell. Decis. Technol.
, vol.12
, pp. 59-66
-
-
Nguyen, H.T.1
Nguyen, T.H.2
Sidorov, D.3
Dreglea, A.4
-
8
-
-
85029805316
-
Takagi–Sugeno fuzzy model-based approach considering multiple weather factors for the photovoltaic power short-term forecasting
-
. Liu, F.; Li, R.R.; Li, Y.; Yan, R.F.; Saha, T. Takagi–Sugeno fuzzy model-based approach considering multiple weather factors for the photovoltaic power short-term forecasting. IET Renew. Power Gener. 2017, 10, 1281–1287. [CrossRef]
-
(2017)
IET Renew. Power Gener.
, vol.10
, pp. 1281-1287
-
-
Liu, F.1
Li, R.R.2
Li, Y.3
Yan, R.F.4
Saha, T.5
-
9
-
-
85056727529
-
Power quality management of PV power plant with transformer integrated filtering method
-
Liu, Q.; Li, Y.; Luo, L.; Peng, Y.; Cao, Y. Power Quality Management of PV Power Plant with Transformer Integrated Filtering Method. IEEE Trans. Power Deliv. 2019, 34, 941–949. [CrossRef]
-
(2019)
IEEE Trans. Power Deliv.
, vol.34
, pp. 941-949
-
-
Liu, Q.1
Li, Y.2
Luo, L.3
Peng, Y.4
Cao, Y.5
-
10
-
-
84997542791
-
Machine learning techniques for power system security assessment
-
Tomin, N.V.; Kurbatsky, V.G.; Sidorov, D.N.; Zhukov, A.V. Machine Learning Techniques for Power System Security Assessment. IFAC PapersOnLine 2016, 49, 445–450. [CrossRef]
-
(2016)
IFAC PapersOnLine
, vol.49
, pp. 445-450
-
-
Tomin, N.V.1
Kurbatsky, V.G.2
Sidorov, D.N.3
Zhukov, A.V.4
-
11
-
-
85054703128
-
A suite of intelligent tools for early detection and prevention of blackouts in power interconnections
-
Voropai, N.I.; Tomin, N.V.; Sidorov, D.N.; Kurbatsky, V.G.; Panasetsky, D.A.; Zhukov, A.V.; Efimov, D.N.; Osak, A.B. A Suite of Intelligent Tools for Early Detection and Prevention of Blackouts in Power Interconnections. Autom. Remote Control 2018, 79, 1741. [CrossRef]
-
(2018)
Autom. Remote Control
, vol.79
, pp. 1741
-
-
Voropai, N.I.1
Tomin, N.V.2
Sidorov, D.N.3
Kurbatsky, V.G.4
Panasetsky, D.A.5
Zhukov, A.V.6
Efimov, D.N.7
Osak, A.B.8
-
12
-
-
85068268247
-
Air Pollution Forecasting using a Deep Learning Model based on 1D Convnets and Bidirectional GRU
-
Tao, Q.; Liu, F.; Li, Y.; Sidorov, D. Air Pollution Forecasting using a Deep Learning Model based on 1D Convnets and Bidirectional GRU. IEEE Access 2019, 7, 76690–76698. [CrossRef]
-
(2019)
IEEE Access
, vol.7
, pp. 76690-76698
-
-
Tao, Q.1
Liu, F.2
Li, Y.3
Sidorov, D.4
-
13
-
-
85072527877
-
A Dynamic Analysis of Energy Storage with Renewable and Diesel Generation using Volterra Equations
-
Sidorov, D.N.; Muftahov, I.R.; Tomin, N.; Karamov, D.N.; Panasetsky, D.A.; Dreglea, A.; Liu, F.; Foley, A. A Dynamic Analysis of Energy Storage with Renewable and Diesel Generation using Volterra Equations. IEEE Trans. Ind. Inf. 2019. [CrossRef]
-
(2019)
IEEE Trans. Ind. Inf.
-
-
Sidorov, D.N.1
Muftahov, I.R.2
Tomin, N.3
Karamov, D.N.4
Panasetsky, D.A.5
Dreglea, A.6
Liu, F.7
Foley, A.8
-
14
-
-
84911940566
-
Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China
-
Wang, J.; Qin, S.; Zhou, Q.; Jiang, H. Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China. Renew. Energy 2014, 76, 91–101. [CrossRef]
-
(2014)
Renew. Energy
, vol.76
, pp. 91-101
-
-
Wang, J.1
Qin, S.2
Zhou, Q.3
Jiang, H.4
-
15
-
-
84903579343
-
A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data
-
Babu, C.N.; Reddy, B.E. A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data. Appl. Soft Comput. J. 2014, 23, 27–38. [CrossRef]
-
(2014)
Appl. Soft Comput. J.
, vol.23
, pp. 27-38
-
-
Babu, C.N.1
Reddy, B.E.2
-
16
-
-
85025474054
-
Wind power forecasting using historical data and artificial neural networks modeling
-
Belgrade, Serbia, 6–9 November
-
Moustris, K.P.; Zafirakis, D.; Kavvadias, K.A.; Kaldellis, J.K. Wind power forecasting using historical data and artificial neural networks modeling. In Proceedings of the Mediterranean Conference on Power Generation, Belgrade, Serbia, 6–9 November 2017.
-
(2017)
Proceedings of the Mediterranean Conference on Power Generation
-
-
Moustris, K.P.1
Zafirakis, D.2
Kavvadias, K.A.3
Kaldellis, J.K.4
-
17
-
-
84973457857
-
A novel bidirectional mechanism based on time series model for wind power forecasting
-
Zhao, Y.; Lin, Y.; Zhi, L.; Song, X.; Lang, Y.; Su, J. A novel bidirectional mechanism based on time series model for wind power forecasting. Appl. Energy 2016, 177, 793–803. [CrossRef]
-
(2016)
Appl. Energy
, vol.177
, pp. 793-803
-
-
Zhao, Y.1
Lin, Y.2
Zhi, L.3
Song, X.4
Lang, Y.5
Su, J.6
-
18
-
-
77953137822
-
On comparing three artificial neural networks for wind speed forecasting
-
Gong, L.; Jing, S. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87, 2313–2320.
-
(2010)
Appl. Energy
, vol.87
, pp. 2313-2320
-
-
Gong, L.1
Jing, S.2
-
19
-
-
85018550165
-
A combined forecasting approach with model self-adjustment for renewable generations and energy loads in smart community
-
Li, Y.; Wen, Z.; Cao, Y.; Tan, Y.; Sidorov, D.; Panasetsky, D. A combined forecasting approach with model self-adjustment for renewable generations and energy loads in smart community. Energy 2017, 129, 216–227. [CrossRef]
-
(2017)
Energy
, vol.129
, pp. 216-227
-
-
Li, Y.1
Wen, Z.2
Cao, Y.3
Tan, Y.4
Sidorov, D.5
Panasetsky, D.6
-
20
-
-
80053345828
-
The hybrid model based on Hilbert-Huang Transform and neural networks for forecasting of short-term operation conditions of power system
-
Trondheim, Norway, 19–23 June
-
Kurbatsky, V.G.; Sidorov, D.N.; Spiryaev, V.A.; Tomin, N.V. The hybrid model based on Hilbert-Huang Transform and neural networks for forecasting of short-term operation conditions of power system. In Proceedings of the 2011 IEEE Trondheim Power Tech, Trondheim, Norway, 19–23 June 2011; pp. 1–7.
-
(2011)
Proceedings of the 2011 IEEE Trondheim Power Tech
, pp. 1-7
-
-
Kurbatsky, V.G.1
Sidorov, D.N.2
Spiryaev, V.A.3
Tomin, N.V.4
-
21
-
-
84940390709
-
Reviews on uncertainty analysis of wind power forecasting
-
Yan, J.; Liu, Q.; Han, S.; Wang, Y.; Feng, S. Reviews on uncertainty analysis of wind power forecasting. Renew. Sustain Energy Rev 2015, 52, 1322–1330. [CrossRef]
-
(2015)
Renew. Sustain Energy Rev
, vol.52
, pp. 1322-1330
-
-
Yan, J.1
Liu, Q.2
Han, S.3
Wang, Y.4
Feng, S.5
-
22
-
-
84944909341
-
Short-term wind speed and power forecasting using an ensemble of mixture density neural networks
-
Men, Z.; Yee, E.; Lien, F.S.; Wen, D.; Chen, Y. Short-term wind speed and power forecasting using an ensemble of mixture density neural networks. Renew. Energy 2016, 87, 203–211. [CrossRef]
-
(2016)
Renew. Energy
, vol.87
, pp. 203-211
-
-
Men, Z.1
Yee, E.2
Lien, F.S.3
Wen, D.4
Chen, Y.5
-
23
-
-
85046035272
-
An advanced approach for optimal wind power generation prediction intervals by using self-adaptive evolutionary extreme learning machine
-
Mahmoud, T.; Dong, Z.; Ma, J. An advanced approach for optimal wind power generation prediction intervals by using self-adaptive evolutionary extreme learning machine. Renew. Energy 2018, 126, 254–269. [CrossRef]
-
(2018)
Renew. Energy
, vol.126
, pp. 254-269
-
-
Mahmoud, T.1
Dong, Z.2
Ma, J.3
-
24
-
-
84964322304
-
Short-term wind power combined forecasting based on error forecast correction
-
Liang, Z.; Liang, J.; Wang, C.; Dong, X.; Miao, X. Short-term wind power combined forecasting based on error forecast correction. Energy Convers. Manag. 2016, 119, 215–226. [CrossRef]
-
(2016)
Energy Convers. Manag.
, vol.119
, pp. 215-226
-
-
Liang, Z.1
Liang, J.2
Wang, C.3
Dong, X.4
Miao, X.5
-
25
-
-
84908425965
-
Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm
-
Chitsaz, H.; Amjady, N.; Zareipour, H. Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm. Energy Convers. Manag. 2015, 89, 588–598. [CrossRef]
-
(2015)
Energy Convers. Manag.
, vol.89
, pp. 588-598
-
-
Chitsaz, H.1
Amjady, N.2
Zareipour, H.3
-
26
-
-
84955753712
-
On the uniform convergence of relative frequencies of events to their probabilities
-
Vovk, Papadopoulos, H., Gammerman, A., Eds.; Springer: Cham, Switzerland
-
Vapnik, V.N.; Chervonenkis, A.Y. On the uniform convergence of relative frequencies of events to their probabilities. In Measures of Complexity; Vovk, V., Papadopoulos, H., Gammerman, A., Eds.; Springer: Cham, Switzerland, 2015.
-
(2015)
Measures of Complexity
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
-
28
-
-
84957889849
-
Realization of EMD signal processing method in LabVIEW and MATLAB
-
Fu, Y.; Wang, H.; Wu, G. Realization of EMD signal processing method in LabVIEW and MATLAB. J. Beijing Inst. Mach. 2008, 23, 23–27.
-
(2008)
J. Beijing Inst. Mach.
, vol.23
, pp. 23-27
-
-
Fu, Y.1
Wang, H.2
Wu, G.3
-
29
-
-
85009944221
-
Short-term wind power forecasting based on T–S fuzzy model
-
Xi’an, China, 25–28 October
-
Liu, F.; Li, R.; Li, Y.; Cao, Y.; Panasetsky, D.; Sidorov, D. Short-term wind power forecasting based on T–S fuzzy model. In Proceedings of the 2016 IEEE Pes Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi’an, China, 25–28 October 2016; pp. 414–418.
-
(2016)
Proceedings of the 2016 IEEE Pes Asia-Pacific Power and Energy Engineering Conference (APPEEC)
, pp. 414-418
-
-
Liu, F.1
Li, R.2
Li, Y.3
Cao, Y.4
Panasetsky, D.5
Sidorov, D.6
-
30
-
-
84908376968
-
Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
-
Osório, G.J.; Matias, J.C.O.; Catalão, J.P.S. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 2015, 75, 301–307. [CrossRef]
-
(2015)
Renew. Energy
, vol.75
, pp. 301-307
-
-
Osório, G.J.1
Matias, J.C.O.2
Catalão, J.P.S.3
-
31
-
-
84924366397
-
Random forest based model for preventing large-scale emergencies in power systems
-
Tomin, N.; Zhukov, A.; Sidorov, D.; Kurbatsky, V.; Panasetsky, D.; Spiryaev, V. Random forest based model for preventing large-scale emergencies in power systems. Int. J. Artif. Intell. 2015, 13, 211–228.
-
(2015)
Int. J. Artif. Intell.
, vol.13
, pp. 211-228
-
-
Tomin, N.1
Zhukov, A.2
Sidorov, D.3
Kurbatsky, V.4
Panasetsky, D.5
Spiryaev, V.6
-
32
-
-
84982973119
-
A least squares support vector machine optimized by cloud-based evolutionary algorithm for wind power generation prediction
-
Li, Q.; Peng, C. A Least Squares Support Vector Machine Optimized by Cloud-Based Evolutionary Algorithm for Wind Power Generation Prediction. Energies 2016, 9, 585.
-
(2016)
Energies
, vol.9
, pp. 585
-
-
Li, Q.1
Peng, C.2
|