메뉴 건너뛰기




Volumn 12, Issue 18, 2019, Pages

Wind speed and power ultra short-term robust forecasting based on Takagi–Sugeno fuzzy model

Author keywords

Linearization; Machine learning; Wind power: wind speed: T S fuzzy model: forecasting

Indexed keywords

BACKPROPAGATION; CLUSTERING ALGORITHMS; FUZZY CLUSTERING; LEARNING SYSTEMS; LEAST SQUARES APPROXIMATIONS; LINEARIZATION; MACHINE LEARNING; NEURAL NETWORKS; SUPPORT VECTOR MACHINES; WIND; WIND POWER;

EID: 85072535565     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en12183551     Document Type: Article
Times cited : (37)

References (32)
  • 2
    • 85060523173 scopus 로고    scopus 로고
    • A review on hybrid empirical mode decomposition models for wind speed and wind power prediction
    • Bokde, N.; Feijóo, A. A Review on Hybrid Empirical Mode Decomposition Models for Wind Speed and Wind Power Prediction. Energies 2019, 12, 254. [CrossRef]
    • (2019) Energies , vol.12 , pp. 254
    • Bokde, N.1    Feijóo, A.2
  • 3
    • 85015062092 scopus 로고    scopus 로고
    • Novel cost model for balancing wind power forecasting uncertainty
    • Yan, J.; Liu, Y.; Li, F.; Gu, C. Novel Cost Model for Balancing Wind Power Forecasting Uncertainty. IEEE Trans. Energy Convers. 2017, 32, 318–329. [CrossRef]
    • (2017) IEEE Trans. Energy Convers. , vol.32 , pp. 318-329
    • Yan, J.1    Liu, Y.2    Li, F.3    Gu, C.4
  • 4
    • 84887788957 scopus 로고    scopus 로고
    • Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization
    • Chang, W.; Ming, Y.; Chang, P.; Ke, Y.-C.; Chung, V. Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization. Int. J. Electr. Power Energy Syst. 2014, 55, 741–748.
    • (2014) Int. J. Electr. Power Energy Syst. , vol.55 , pp. 741-748
    • Chang, W.1    Ming, Y.2    Chang, P.3    Ke, Y.-C.4    Chung, V.5
  • 5
    • 85041834580 scopus 로고    scopus 로고
    • Robust approach to detection of bubbles based on images analysis
    • Nguyen, H.T.; Nguyen, T.H.; Dreglea, A.I. Robust approach to detection of bubbles based on images analysis. Int. J. Artif. Intell. 2018, 16, 167–177.
    • (2018) Int. J. Artif. Intell. , vol.16 , pp. 167-177
    • Nguyen, H.T.1    Nguyen, T.H.2    Dreglea, A.I.3
  • 6
    • 85058645173 scopus 로고    scopus 로고
    • Monitoring of combustion regimes based on the visualization of the flame and machine learning
    • Tokarev, M.P.; Abdurakipov, S.S.; Gobyzov, O.A.; Seredkin, A.V.; Dulin, V.M. Monitoring of combustion regimes based on the visualization of the flame and machine learning. J. Phys. Conf. Ser. 2018, 1128, 012138. [CrossRef]
    • (2018) J. Phys. Conf. Ser. , vol.1128 , pp. 012138
    • Tokarev, M.P.1    Abdurakipov, S.S.2    Gobyzov, O.A.3    Seredkin, A.V.4    Dulin, V.M.5
  • 7
    • 85044348039 scopus 로고    scopus 로고
    • Machine learning algorithms application to road defects classification
    • Nguyen, H.T.; Nguyen, T.H.; Sidorov, D.; Dreglea, A. Machine learning algorithms application to road defects classification. Intell. Decis. Technol. 2018, 12, 59–66. [CrossRef]
    • (2018) Intell. Decis. Technol. , vol.12 , pp. 59-66
    • Nguyen, H.T.1    Nguyen, T.H.2    Sidorov, D.3    Dreglea, A.4
  • 8
    • 85029805316 scopus 로고    scopus 로고
    • Takagi–Sugeno fuzzy model-based approach considering multiple weather factors for the photovoltaic power short-term forecasting
    • . Liu, F.; Li, R.R.; Li, Y.; Yan, R.F.; Saha, T. Takagi–Sugeno fuzzy model-based approach considering multiple weather factors for the photovoltaic power short-term forecasting. IET Renew. Power Gener. 2017, 10, 1281–1287. [CrossRef]
    • (2017) IET Renew. Power Gener. , vol.10 , pp. 1281-1287
    • Liu, F.1    Li, R.R.2    Li, Y.3    Yan, R.F.4    Saha, T.5
  • 9
    • 85056727529 scopus 로고    scopus 로고
    • Power quality management of PV power plant with transformer integrated filtering method
    • Liu, Q.; Li, Y.; Luo, L.; Peng, Y.; Cao, Y. Power Quality Management of PV Power Plant with Transformer Integrated Filtering Method. IEEE Trans. Power Deliv. 2019, 34, 941–949. [CrossRef]
    • (2019) IEEE Trans. Power Deliv. , vol.34 , pp. 941-949
    • Liu, Q.1    Li, Y.2    Luo, L.3    Peng, Y.4    Cao, Y.5
  • 10
    • 84997542791 scopus 로고    scopus 로고
    • Machine learning techniques for power system security assessment
    • Tomin, N.V.; Kurbatsky, V.G.; Sidorov, D.N.; Zhukov, A.V. Machine Learning Techniques for Power System Security Assessment. IFAC PapersOnLine 2016, 49, 445–450. [CrossRef]
    • (2016) IFAC PapersOnLine , vol.49 , pp. 445-450
    • Tomin, N.V.1    Kurbatsky, V.G.2    Sidorov, D.N.3    Zhukov, A.V.4
  • 12
    • 85068268247 scopus 로고    scopus 로고
    • Air Pollution Forecasting using a Deep Learning Model based on 1D Convnets and Bidirectional GRU
    • Tao, Q.; Liu, F.; Li, Y.; Sidorov, D. Air Pollution Forecasting using a Deep Learning Model based on 1D Convnets and Bidirectional GRU. IEEE Access 2019, 7, 76690–76698. [CrossRef]
    • (2019) IEEE Access , vol.7 , pp. 76690-76698
    • Tao, Q.1    Liu, F.2    Li, Y.3    Sidorov, D.4
  • 14
    • 84911940566 scopus 로고    scopus 로고
    • Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China
    • Wang, J.; Qin, S.; Zhou, Q.; Jiang, H. Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China. Renew. Energy 2014, 76, 91–101. [CrossRef]
    • (2014) Renew. Energy , vol.76 , pp. 91-101
    • Wang, J.1    Qin, S.2    Zhou, Q.3    Jiang, H.4
  • 15
    • 84903579343 scopus 로고    scopus 로고
    • A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data
    • Babu, C.N.; Reddy, B.E. A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data. Appl. Soft Comput. J. 2014, 23, 27–38. [CrossRef]
    • (2014) Appl. Soft Comput. J. , vol.23 , pp. 27-38
    • Babu, C.N.1    Reddy, B.E.2
  • 17
    • 84973457857 scopus 로고    scopus 로고
    • A novel bidirectional mechanism based on time series model for wind power forecasting
    • Zhao, Y.; Lin, Y.; Zhi, L.; Song, X.; Lang, Y.; Su, J. A novel bidirectional mechanism based on time series model for wind power forecasting. Appl. Energy 2016, 177, 793–803. [CrossRef]
    • (2016) Appl. Energy , vol.177 , pp. 793-803
    • Zhao, Y.1    Lin, Y.2    Zhi, L.3    Song, X.4    Lang, Y.5    Su, J.6
  • 18
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Gong, L.; Jing, S. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87, 2313–2320.
    • (2010) Appl. Energy , vol.87 , pp. 2313-2320
    • Gong, L.1    Jing, S.2
  • 19
    • 85018550165 scopus 로고    scopus 로고
    • A combined forecasting approach with model self-adjustment for renewable generations and energy loads in smart community
    • Li, Y.; Wen, Z.; Cao, Y.; Tan, Y.; Sidorov, D.; Panasetsky, D. A combined forecasting approach with model self-adjustment for renewable generations and energy loads in smart community. Energy 2017, 129, 216–227. [CrossRef]
    • (2017) Energy , vol.129 , pp. 216-227
    • Li, Y.1    Wen, Z.2    Cao, Y.3    Tan, Y.4    Sidorov, D.5    Panasetsky, D.6
  • 20
    • 80053345828 scopus 로고    scopus 로고
    • The hybrid model based on Hilbert-Huang Transform and neural networks for forecasting of short-term operation conditions of power system
    • Trondheim, Norway, 19–23 June
    • Kurbatsky, V.G.; Sidorov, D.N.; Spiryaev, V.A.; Tomin, N.V. The hybrid model based on Hilbert-Huang Transform and neural networks for forecasting of short-term operation conditions of power system. In Proceedings of the 2011 IEEE Trondheim Power Tech, Trondheim, Norway, 19–23 June 2011; pp. 1–7.
    • (2011) Proceedings of the 2011 IEEE Trondheim Power Tech , pp. 1-7
    • Kurbatsky, V.G.1    Sidorov, D.N.2    Spiryaev, V.A.3    Tomin, N.V.4
  • 21
    • 84940390709 scopus 로고    scopus 로고
    • Reviews on uncertainty analysis of wind power forecasting
    • Yan, J.; Liu, Q.; Han, S.; Wang, Y.; Feng, S. Reviews on uncertainty analysis of wind power forecasting. Renew. Sustain Energy Rev 2015, 52, 1322–1330. [CrossRef]
    • (2015) Renew. Sustain Energy Rev , vol.52 , pp. 1322-1330
    • Yan, J.1    Liu, Q.2    Han, S.3    Wang, Y.4    Feng, S.5
  • 22
    • 84944909341 scopus 로고    scopus 로고
    • Short-term wind speed and power forecasting using an ensemble of mixture density neural networks
    • Men, Z.; Yee, E.; Lien, F.S.; Wen, D.; Chen, Y. Short-term wind speed and power forecasting using an ensemble of mixture density neural networks. Renew. Energy 2016, 87, 203–211. [CrossRef]
    • (2016) Renew. Energy , vol.87 , pp. 203-211
    • Men, Z.1    Yee, E.2    Lien, F.S.3    Wen, D.4    Chen, Y.5
  • 23
    • 85046035272 scopus 로고    scopus 로고
    • An advanced approach for optimal wind power generation prediction intervals by using self-adaptive evolutionary extreme learning machine
    • Mahmoud, T.; Dong, Z.; Ma, J. An advanced approach for optimal wind power generation prediction intervals by using self-adaptive evolutionary extreme learning machine. Renew. Energy 2018, 126, 254–269. [CrossRef]
    • (2018) Renew. Energy , vol.126 , pp. 254-269
    • Mahmoud, T.1    Dong, Z.2    Ma, J.3
  • 24
    • 84964322304 scopus 로고    scopus 로고
    • Short-term wind power combined forecasting based on error forecast correction
    • Liang, Z.; Liang, J.; Wang, C.; Dong, X.; Miao, X. Short-term wind power combined forecasting based on error forecast correction. Energy Convers. Manag. 2016, 119, 215–226. [CrossRef]
    • (2016) Energy Convers. Manag. , vol.119 , pp. 215-226
    • Liang, Z.1    Liang, J.2    Wang, C.3    Dong, X.4    Miao, X.5
  • 25
    • 84908425965 scopus 로고    scopus 로고
    • Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm
    • Chitsaz, H.; Amjady, N.; Zareipour, H. Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm. Energy Convers. Manag. 2015, 89, 588–598. [CrossRef]
    • (2015) Energy Convers. Manag. , vol.89 , pp. 588-598
    • Chitsaz, H.1    Amjady, N.2    Zareipour, H.3
  • 26
    • 84955753712 scopus 로고    scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vovk, Papadopoulos, H., Gammerman, A., Eds.; Springer: Cham, Switzerland
    • Vapnik, V.N.; Chervonenkis, A.Y. On the uniform convergence of relative frequencies of events to their probabilities. In Measures of Complexity; Vovk, V., Papadopoulos, H., Gammerman, A., Eds.; Springer: Cham, Switzerland, 2015.
    • (2015) Measures of Complexity
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 27
    • 79955702502 scopus 로고    scopus 로고
    • LiBSVM: A library for support vector machines
    • Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 27, 1–27. [CrossRef]
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.27 , pp. 1-27
    • Chang, C.C.1    Lin, C.J.2
  • 28
    • 84957889849 scopus 로고    scopus 로고
    • Realization of EMD signal processing method in LabVIEW and MATLAB
    • Fu, Y.; Wang, H.; Wu, G. Realization of EMD signal processing method in LabVIEW and MATLAB. J. Beijing Inst. Mach. 2008, 23, 23–27.
    • (2008) J. Beijing Inst. Mach. , vol.23 , pp. 23-27
    • Fu, Y.1    Wang, H.2    Wu, G.3
  • 30
    • 84908376968 scopus 로고    scopus 로고
    • Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
    • Osório, G.J.; Matias, J.C.O.; Catalão, J.P.S. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 2015, 75, 301–307. [CrossRef]
    • (2015) Renew. Energy , vol.75 , pp. 301-307
    • Osório, G.J.1    Matias, J.C.O.2    Catalão, J.P.S.3
  • 32
    • 84982973119 scopus 로고    scopus 로고
    • A least squares support vector machine optimized by cloud-based evolutionary algorithm for wind power generation prediction
    • Li, Q.; Peng, C. A Least Squares Support Vector Machine Optimized by Cloud-Based Evolutionary Algorithm for Wind Power Generation Prediction. Energies 2016, 9, 585.
    • (2016) Energies , vol.9 , pp. 585
    • Li, Q.1    Peng, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.