메뉴 건너뛰기




Volumn 28, Issue 2, 2020, Pages 671-679

Hierarchical Bayesian Network Modeling Framework for Large-Scale Process Monitoring and Decision Making

Author keywords

Bayesian network; decision making; fault diagnosis; hierarchical framework; large scale process monitoring

Indexed keywords

BENCHMARKING; CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; DATA STRUCTURES; DECISION MAKING; FAILURE ANALYSIS; FAULT DETECTION; KNOWLEDGE BASED SYSTEMS; MATHEMATICAL MODELS; MONITORING; PROCESS CONTROL; PROCESS MONITORING; TOPOLOGY;

EID: 85058151520     PISSN: 10636536     EISSN: 15580865     Source Type: Journal    
DOI: 10.1109/TCST.2018.2882562     Document Type: Article
Times cited : (43)

References (30)
  • 1
    • 85031741937 scopus 로고    scopus 로고
    • Review on data-driven modeling and monitoring for plantwide industrial processes
    • Dec.
    • Z. Ge, "Review on data-driven modeling and monitoring for plantwide industrial processes," Chemometrics Intell. Lab. Syst., vol. 171, pp. 16-25, Dec. 2017.
    • (2017) Chemometrics Intell. Lab. Syst. , vol.171 , pp. 16-25
    • Ge, Z.1
  • 2
    • 85054516844 scopus 로고    scopus 로고
    • Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data
    • J. Zhu, Z. Ge, Z. Song, and F. Gao, "Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data," Annu. Rev. Control, vol. 46, pp. 107-133, 2018.
    • (2018) Annu. Rev. Control , vol.46 , pp. 107-133
    • Zhu, J.1    Ge, Z.2    Song, Z.3    Gao, F.4
  • 3
    • 84873346452 scopus 로고    scopus 로고
    • Distributed PCA model for plant-wide process monitoring
    • Z. Ge and Z. Song, "Distributed PCA model for plant-wide process monitoring," Ind. Eng. Chem. Res., vol. 52, no. 5, pp. 1947-1957, 2013.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , Issue.5 , pp. 1947-1957
    • Ge, Z.1    Song, Z.2
  • 4
    • 85031767310 scopus 로고    scopus 로고
    • Distributed predictive modeling framework for prediction and diagnosis of key performance index in plant-wide processes
    • May
    • Z. Ge, "Distributed predictive modeling framework for prediction and diagnosis of key performance index in plant-wide processes," J. Process Control, vol. 65, pp. 107-117, May 2018.
    • (2018) J. Process Control , vol.65 , pp. 107-117
    • Ge, Z.1
  • 5
    • 84987722762 scopus 로고    scopus 로고
    • Bayesian fault diagnosis with asynchronous measurements and its application in networked distributed monitoring
    • Oct.
    • Q. Jiang, B. Huang, S. X. Ding, and X. Yan, "Bayesian fault diagnosis with asynchronous measurements and its application in networked distributed monitoring," IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6316-6324, Oct. 2016.
    • (2016) IEEE Trans. Ind. Electron. , vol.63 , Issue.10 , pp. 6316-6324
    • Jiang, Q.1    Huang, B.2    Ding, S.X.3    Yan, X.4
  • 6
    • 84984706602 scopus 로고    scopus 로고
    • Distributed monitoring for large-scale processes based on multivariate statistical analysis and Bayesian method
    • Oct.
    • Q. Jiang and B. Huang, "Distributed monitoring for large-scale processes based on multivariate statistical analysis and Bayesian method," J. Process Control, vol. 46, pp. 75-83, Oct. 2016.
    • (2016) J. Process Control , vol.46 , pp. 75-83
    • Jiang, Q.1    Huang, B.2
  • 7
    • 85029424137 scopus 로고    scopus 로고
    • Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data
    • Aug.
    • J. Zhu, Z. Ge, and Z. Song, "Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data," IEEE Trans. Ind. Informat., vol. 13, no. 4, pp. 1877-1885, Aug. 2017.
    • (2017) IEEE Trans. Ind. Informat. , vol.13 , Issue.4 , pp. 1877-1885
    • Zhu, J.1    Ge, Z.2    Song, Z.3
  • 8
    • 84886010646 scopus 로고    scopus 로고
    • Optimal variable selection for effective statistical process monitoring
    • Jan.
    • K. Ghosh, M. Ramteke, and R. Srinivasan, "Optimal variable selection for effective statistical process monitoring," Comput. Chem. Eng., vol. 60, pp. 260-276, Jan. 2014.
    • (2014) Comput. Chem. Eng. , vol.60 , pp. 260-276
    • Ghosh, K.1    Ramteke, M.2    Srinivasan, R.3
  • 9
    • 84962485512 scopus 로고    scopus 로고
    • Plant-wide industrial process monitoring: A distributed modeling framework
    • Feb.
    • Z. Ge and J. Chen, "Plant-wide industrial process monitoring: A distributed modeling framework," IEEE Trans. Ind. Informat., vol. 12, no. 1, pp. 310-321, Feb. 2016.
    • (2016) IEEE Trans. Ind. Informat. , vol.12 , Issue.1 , pp. 310-321
    • Ge, Z.1    Chen, J.2
  • 10
    • 77955511680 scopus 로고    scopus 로고
    • Fault detection and isolation of faults in a multivariate process with Bayesian network
    • S. Verron, J. Li, and T. Tiplica, "Fault detection and isolation of faults in a multivariate process with Bayesian network," J. Process Control, vol. 20, no. 8, pp. 902-911, 2010.
    • (2010) J. Process Control , vol.20 , Issue.8 , pp. 902-911
    • Verron, S.1    Li, J.2    Tiplica, T.3
  • 11
    • 85027037422 scopus 로고    scopus 로고
    • Root cause diagnosis of process fault using KPCA and Bayesian network
    • H. Gharahbagheri, S. A. Imtiaz, and F. Khan, "Root cause diagnosis of process fault using KPCA and Bayesian network," Ind. Eng. Chem. Res., vol. 56, no. 8, pp. 2054-2070, 2017.
    • (2017) Ind. Eng. Chem. Res. , vol.56 , Issue.8 , pp. 2054-2070
    • Gharahbagheri, H.1    Imtiaz, S.A.2    Khan, F.3
  • 12
    • 84906501997 scopus 로고    scopus 로고
    • Identification of probabilistic graphical network model for root-cause diagnosis in industrial processes
    • Dec.
    • J. Mori, V. Mahalec, and J. Yu, "Identification of probabilistic graphical network model for root-cause diagnosis in industrial processes," Comput. Chem. Eng., vol. 71, pp. 171-209, Dec. 2014.
    • (2014) Comput. Chem. Eng. , vol.71 , pp. 171-209
    • Mori, J.1    Mahalec, V.2    Yu, J.3
  • 13
    • 52049095060 scopus 로고    scopus 로고
    • Bayesian methods for control loop monitoring and diagnosis
    • B. Huang, "Bayesian methods for control loop monitoring and diagnosis," J. Process Control, vol. 18, no. 9, pp. 829-838, 2008.
    • (2008) J. Process Control , vol.18 , Issue.9 , pp. 829-838
    • Huang, B.1
  • 14
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • N. Friedman, D. Geiger, and M. Goldszmidt, "Bayesian network classifiers," Mach. Learn., vol. 29, nos. 2-3, pp. 131-163, 1997.
    • (1997) Mach. Learn. , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 15
    • 84953860609 scopus 로고    scopus 로고
    • Classification using the general Bayesian network
    • S. L. Ang, H. C. Ong, and H. C. Low, "Classification using the general Bayesian network," Pertanika J. Sci. Technol., vol. 24, no. 1, pp. 205-211, 2016.
    • (2016) Pertanika J. Sci. Technol. , vol.24 , Issue.1 , pp. 205-211
    • Ang, S.L.1    Ong, H.C.2    Low, H.C.3
  • 16
    • 84993949918 scopus 로고    scopus 로고
    • Fusion of micro-macro data for fault diagnosis of a sweetening unit using Bayesian network
    • Nov.
    • M. Askarian, R. Zarghami, F. Jalali-Farahani, and N. Mostoufi, "Fusion of micro-macro data for fault diagnosis of a sweetening unit using Bayesian network," Chem. Eng. Res. Des., vol. 115, pp. 325-334, Nov. 2016.
    • (2016) Chem. Eng. Res. Des. , vol.115 , pp. 325-334
    • Askarian, M.1    Zarghami, R.2    Jalali-Farahani, F.3    Mostoufi, N.4
  • 17
    • 84879307272 scopus 로고    scopus 로고
    • A novel dynamic Bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis
    • J. Yu and M. M. Rashid, "A novel dynamic Bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis," AIChE J., vol. 59, no. 7, pp. 2348-2365, 2013.
    • (2013) AIChE J. , vol.59 , Issue.7 , pp. 2348-2365
    • Yu, J.1    Rashid, M.M.2
  • 18
    • 84896326399 scopus 로고    scopus 로고
    • Dynamic Bayesian network based networked process monitoring for fault propagation identification and root cause diagnosis of complex dynamic processes
    • J. Mori and J. Yu, "Dynamic Bayesian network based networked process monitoring for fault propagation identification and root cause diagnosis of complex dynamic processes," IFAC Proc. Volumes, vol. 46, no. 32, pp. 678-683, 2013.
    • (2013) IFAC Proc. Volumes , vol.46 , Issue.32 , pp. 678-683
    • Mori, J.1    Yu, J.2
  • 19
    • 77956417133 scopus 로고    scopus 로고
    • Dynamic Bayesian approach for control loop diagnosis with underlying mode dependency
    • F. Qi and B. Huang, "Dynamic Bayesian approach for control loop diagnosis with underlying mode dependency," Ind. Eng. Chem. Res., vol. 49, no. 18, pp. 8613-8623, 2010.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , Issue.18 , pp. 8613-8623
    • Qi, F.1    Huang, B.2
  • 20
    • 34347345603 scopus 로고    scopus 로고
    • Ph.D. dissertation, School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, May
    • D. Margaritis, "Learning Bayesian network model structure from data," Ph.D. dissertation, School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, May 2003.
    • (2003) Learning Bayesian Network Model Structure from Data
    • Margaritis, D.1
  • 21
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian-network structures
    • Feb.
    • D. M. Chickering, "Learning equivalence classes of Bayesian-network structures," J. Mach. Learn. Res., vol. 2, pp. 445-498, Feb. 2002.
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 445-498
    • Chickering, D.M.1
  • 23
    • 84943580159 scopus 로고    scopus 로고
    • Process monitoring using kernel density estimation and Bayesian networking with an industrial case study
    • Sep.
    • R. Gonzalez, B. Huang, and E. Lau, "Process monitoring using kernel density estimation and Bayesian networking with an industrial case study," ISA Trans., vol. 58, pp. 330-347, Sep. 2015.
    • (2015) ISA Trans. , vol.58 , pp. 330-347
    • Gonzalez, R.1    Huang, B.2    Lau, E.3
  • 24
    • 0030192667 scopus 로고    scopus 로고
    • Learning Bayesian network structures by searching for the best ordering with genetic algorithms
    • Jul.
    • P. Larranaga, C. M. H. Kuijpers, R. H. Murga, and Y. Yurramendi, "Learning Bayesian network structures by searching for the best ordering with genetic algorithms," IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 26, no. 4, pp. 487-493, Jul. 1996.
    • (1996) IEEE Trans. Syst., Man, Cybern. A, Syst. Humans , vol.26 , Issue.4 , pp. 487-493
    • Larranaga, P.1    Kuijpers, C.M.H.2    Murga, R.H.3    Yurramendi, Y.4
  • 26
    • 85031742872 scopus 로고    scopus 로고
    • Large-scale plant-wide process modeling and hierarchical monitoring: A distributed Bayesian network approach
    • May
    • J. Zhu, Z. Ge, Z. Song, L. Zhou, and G. Chen, "Large-scale plant-wide process modeling and hierarchical monitoring: A distributed Bayesian network approach," J. Process Control, vol. 65, pp. 91-106, May 2018.
    • (2018) J. Process Control , vol.65 , pp. 91-106
    • Zhu, J.1    Ge, Z.2    Song, Z.3    Zhou, L.4    Chen, G.5
  • 27
    • 85030772750 scopus 로고    scopus 로고
    • Data mining and analytics in the process industry: The role of machine learning
    • Z. Ge, Z. Song, S. X. Ding, and B. Huang, "Data mining and analytics in the process industry: The role of machine learning," IEEE Access, vol. 5, pp. 20590-20616, 2017.
    • (2017) IEEE Access , vol.5 , pp. 20590-20616
    • Ge, Z.1    Song, Z.2    Ding, S.X.3    Huang, B.4
  • 28
    • 85045702659 scopus 로고    scopus 로고
    • Big data quality prediction in the process industry: A distributed parallel modeling framework
    • Aug.
    • L. Yao and Z. Ge, "Big data quality prediction in the process industry: A distributed parallel modeling framework," J. Process Control, vol. 68, pp. 1-13, Aug. 2018.
    • (2018) J. Process Control , vol.68 , pp. 1-13
    • Yao, L.1    Ge, Z.2
  • 29
    • 85050402579 scopus 로고    scopus 로고
    • Scalable semi-supervised GMM for big data quality prediction in multimode processes
    • to be published
    • L. Yao and Z. Ge, "Scalable semi-supervised GMM for big data quality prediction in multimode processes," IEEE Trans. Ind. Electron., to be published, doi: 10.1109/TIE.2018.2856200.
    • IEEE Trans. Ind. Electron.
    • Yao, L.1    Ge, Z.2
  • 30
    • 85028847875 scopus 로고    scopus 로고
    • Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application
    • Feb.
    • L. Yao and Z. Ge, "Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application," IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1490-1498, Feb. 2018.
    • (2018) IEEE Trans. Ind. Electron. , vol.65 , Issue.2 , pp. 1490-1498
    • Yao, L.1    Ge, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.