-
1
-
-
85031741937
-
Review on data-driven modeling and monitoring for plantwide industrial processes
-
Dec.
-
Z. Ge, "Review on data-driven modeling and monitoring for plantwide industrial processes," Chemometrics Intell. Lab. Syst., vol. 171, pp. 16-25, Dec. 2017.
-
(2017)
Chemometrics Intell. Lab. Syst.
, vol.171
, pp. 16-25
-
-
Ge, Z.1
-
2
-
-
85054516844
-
Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data
-
J. Zhu, Z. Ge, Z. Song, and F. Gao, "Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data," Annu. Rev. Control, vol. 46, pp. 107-133, 2018.
-
(2018)
Annu. Rev. Control
, vol.46
, pp. 107-133
-
-
Zhu, J.1
Ge, Z.2
Song, Z.3
Gao, F.4
-
3
-
-
84873346452
-
Distributed PCA model for plant-wide process monitoring
-
Z. Ge and Z. Song, "Distributed PCA model for plant-wide process monitoring," Ind. Eng. Chem. Res., vol. 52, no. 5, pp. 1947-1957, 2013.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, Issue.5
, pp. 1947-1957
-
-
Ge, Z.1
Song, Z.2
-
4
-
-
85031767310
-
Distributed predictive modeling framework for prediction and diagnosis of key performance index in plant-wide processes
-
May
-
Z. Ge, "Distributed predictive modeling framework for prediction and diagnosis of key performance index in plant-wide processes," J. Process Control, vol. 65, pp. 107-117, May 2018.
-
(2018)
J. Process Control
, vol.65
, pp. 107-117
-
-
Ge, Z.1
-
5
-
-
84987722762
-
Bayesian fault diagnosis with asynchronous measurements and its application in networked distributed monitoring
-
Oct.
-
Q. Jiang, B. Huang, S. X. Ding, and X. Yan, "Bayesian fault diagnosis with asynchronous measurements and its application in networked distributed monitoring," IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6316-6324, Oct. 2016.
-
(2016)
IEEE Trans. Ind. Electron.
, vol.63
, Issue.10
, pp. 6316-6324
-
-
Jiang, Q.1
Huang, B.2
Ding, S.X.3
Yan, X.4
-
6
-
-
84984706602
-
Distributed monitoring for large-scale processes based on multivariate statistical analysis and Bayesian method
-
Oct.
-
Q. Jiang and B. Huang, "Distributed monitoring for large-scale processes based on multivariate statistical analysis and Bayesian method," J. Process Control, vol. 46, pp. 75-83, Oct. 2016.
-
(2016)
J. Process Control
, vol.46
, pp. 75-83
-
-
Jiang, Q.1
Huang, B.2
-
7
-
-
85029424137
-
Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data
-
Aug.
-
J. Zhu, Z. Ge, and Z. Song, "Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data," IEEE Trans. Ind. Informat., vol. 13, no. 4, pp. 1877-1885, Aug. 2017.
-
(2017)
IEEE Trans. Ind. Informat.
, vol.13
, Issue.4
, pp. 1877-1885
-
-
Zhu, J.1
Ge, Z.2
Song, Z.3
-
8
-
-
84886010646
-
Optimal variable selection for effective statistical process monitoring
-
Jan.
-
K. Ghosh, M. Ramteke, and R. Srinivasan, "Optimal variable selection for effective statistical process monitoring," Comput. Chem. Eng., vol. 60, pp. 260-276, Jan. 2014.
-
(2014)
Comput. Chem. Eng.
, vol.60
, pp. 260-276
-
-
Ghosh, K.1
Ramteke, M.2
Srinivasan, R.3
-
9
-
-
84962485512
-
Plant-wide industrial process monitoring: A distributed modeling framework
-
Feb.
-
Z. Ge and J. Chen, "Plant-wide industrial process monitoring: A distributed modeling framework," IEEE Trans. Ind. Informat., vol. 12, no. 1, pp. 310-321, Feb. 2016.
-
(2016)
IEEE Trans. Ind. Informat.
, vol.12
, Issue.1
, pp. 310-321
-
-
Ge, Z.1
Chen, J.2
-
10
-
-
77955511680
-
Fault detection and isolation of faults in a multivariate process with Bayesian network
-
S. Verron, J. Li, and T. Tiplica, "Fault detection and isolation of faults in a multivariate process with Bayesian network," J. Process Control, vol. 20, no. 8, pp. 902-911, 2010.
-
(2010)
J. Process Control
, vol.20
, Issue.8
, pp. 902-911
-
-
Verron, S.1
Li, J.2
Tiplica, T.3
-
11
-
-
85027037422
-
Root cause diagnosis of process fault using KPCA and Bayesian network
-
H. Gharahbagheri, S. A. Imtiaz, and F. Khan, "Root cause diagnosis of process fault using KPCA and Bayesian network," Ind. Eng. Chem. Res., vol. 56, no. 8, pp. 2054-2070, 2017.
-
(2017)
Ind. Eng. Chem. Res.
, vol.56
, Issue.8
, pp. 2054-2070
-
-
Gharahbagheri, H.1
Imtiaz, S.A.2
Khan, F.3
-
12
-
-
84906501997
-
Identification of probabilistic graphical network model for root-cause diagnosis in industrial processes
-
Dec.
-
J. Mori, V. Mahalec, and J. Yu, "Identification of probabilistic graphical network model for root-cause diagnosis in industrial processes," Comput. Chem. Eng., vol. 71, pp. 171-209, Dec. 2014.
-
(2014)
Comput. Chem. Eng.
, vol.71
, pp. 171-209
-
-
Mori, J.1
Mahalec, V.2
Yu, J.3
-
13
-
-
52049095060
-
Bayesian methods for control loop monitoring and diagnosis
-
B. Huang, "Bayesian methods for control loop monitoring and diagnosis," J. Process Control, vol. 18, no. 9, pp. 829-838, 2008.
-
(2008)
J. Process Control
, vol.18
, Issue.9
, pp. 829-838
-
-
Huang, B.1
-
14
-
-
0031276011
-
Bayesian network classifiers
-
N. Friedman, D. Geiger, and M. Goldszmidt, "Bayesian network classifiers," Mach. Learn., vol. 29, nos. 2-3, pp. 131-163, 1997.
-
(1997)
Mach. Learn.
, vol.29
, Issue.2-3
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
15
-
-
84953860609
-
Classification using the general Bayesian network
-
S. L. Ang, H. C. Ong, and H. C. Low, "Classification using the general Bayesian network," Pertanika J. Sci. Technol., vol. 24, no. 1, pp. 205-211, 2016.
-
(2016)
Pertanika J. Sci. Technol.
, vol.24
, Issue.1
, pp. 205-211
-
-
Ang, S.L.1
Ong, H.C.2
Low, H.C.3
-
16
-
-
84993949918
-
Fusion of micro-macro data for fault diagnosis of a sweetening unit using Bayesian network
-
Nov.
-
M. Askarian, R. Zarghami, F. Jalali-Farahani, and N. Mostoufi, "Fusion of micro-macro data for fault diagnosis of a sweetening unit using Bayesian network," Chem. Eng. Res. Des., vol. 115, pp. 325-334, Nov. 2016.
-
(2016)
Chem. Eng. Res. Des.
, vol.115
, pp. 325-334
-
-
Askarian, M.1
Zarghami, R.2
Jalali-Farahani, F.3
Mostoufi, N.4
-
17
-
-
84879307272
-
A novel dynamic Bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis
-
J. Yu and M. M. Rashid, "A novel dynamic Bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis," AIChE J., vol. 59, no. 7, pp. 2348-2365, 2013.
-
(2013)
AIChE J.
, vol.59
, Issue.7
, pp. 2348-2365
-
-
Yu, J.1
Rashid, M.M.2
-
18
-
-
84896326399
-
Dynamic Bayesian network based networked process monitoring for fault propagation identification and root cause diagnosis of complex dynamic processes
-
J. Mori and J. Yu, "Dynamic Bayesian network based networked process monitoring for fault propagation identification and root cause diagnosis of complex dynamic processes," IFAC Proc. Volumes, vol. 46, no. 32, pp. 678-683, 2013.
-
(2013)
IFAC Proc. Volumes
, vol.46
, Issue.32
, pp. 678-683
-
-
Mori, J.1
Yu, J.2
-
19
-
-
77956417133
-
Dynamic Bayesian approach for control loop diagnosis with underlying mode dependency
-
F. Qi and B. Huang, "Dynamic Bayesian approach for control loop diagnosis with underlying mode dependency," Ind. Eng. Chem. Res., vol. 49, no. 18, pp. 8613-8623, 2010.
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, Issue.18
, pp. 8613-8623
-
-
Qi, F.1
Huang, B.2
-
20
-
-
34347345603
-
-
Ph.D. dissertation, School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, May
-
D. Margaritis, "Learning Bayesian network model structure from data," Ph.D. dissertation, School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, May 2003.
-
(2003)
Learning Bayesian Network Model Structure from Data
-
-
Margaritis, D.1
-
21
-
-
0042496103
-
Learning equivalence classes of Bayesian-network structures
-
Feb.
-
D. M. Chickering, "Learning equivalence classes of Bayesian-network structures," J. Mach. Learn. Res., vol. 2, pp. 445-498, Feb. 2002.
-
(2002)
J. Mach. Learn. Res.
, vol.2
, pp. 445-498
-
-
Chickering, D.M.1
-
23
-
-
84943580159
-
Process monitoring using kernel density estimation and Bayesian networking with an industrial case study
-
Sep.
-
R. Gonzalez, B. Huang, and E. Lau, "Process monitoring using kernel density estimation and Bayesian networking with an industrial case study," ISA Trans., vol. 58, pp. 330-347, Sep. 2015.
-
(2015)
ISA Trans.
, vol.58
, pp. 330-347
-
-
Gonzalez, R.1
Huang, B.2
Lau, E.3
-
24
-
-
0030192667
-
Learning Bayesian network structures by searching for the best ordering with genetic algorithms
-
Jul.
-
P. Larranaga, C. M. H. Kuijpers, R. H. Murga, and Y. Yurramendi, "Learning Bayesian network structures by searching for the best ordering with genetic algorithms," IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 26, no. 4, pp. 487-493, Jul. 1996.
-
(1996)
IEEE Trans. Syst., Man, Cybern. A, Syst. Humans
, vol.26
, Issue.4
, pp. 487-493
-
-
Larranaga, P.1
Kuijpers, C.M.H.2
Murga, R.H.3
Yurramendi, Y.4
-
26
-
-
85031742872
-
Large-scale plant-wide process modeling and hierarchical monitoring: A distributed Bayesian network approach
-
May
-
J. Zhu, Z. Ge, Z. Song, L. Zhou, and G. Chen, "Large-scale plant-wide process modeling and hierarchical monitoring: A distributed Bayesian network approach," J. Process Control, vol. 65, pp. 91-106, May 2018.
-
(2018)
J. Process Control
, vol.65
, pp. 91-106
-
-
Zhu, J.1
Ge, Z.2
Song, Z.3
Zhou, L.4
Chen, G.5
-
27
-
-
85030772750
-
Data mining and analytics in the process industry: The role of machine learning
-
Z. Ge, Z. Song, S. X. Ding, and B. Huang, "Data mining and analytics in the process industry: The role of machine learning," IEEE Access, vol. 5, pp. 20590-20616, 2017.
-
(2017)
IEEE Access
, vol.5
, pp. 20590-20616
-
-
Ge, Z.1
Song, Z.2
Ding, S.X.3
Huang, B.4
-
28
-
-
85045702659
-
Big data quality prediction in the process industry: A distributed parallel modeling framework
-
Aug.
-
L. Yao and Z. Ge, "Big data quality prediction in the process industry: A distributed parallel modeling framework," J. Process Control, vol. 68, pp. 1-13, Aug. 2018.
-
(2018)
J. Process Control
, vol.68
, pp. 1-13
-
-
Yao, L.1
Ge, Z.2
-
29
-
-
85050402579
-
Scalable semi-supervised GMM for big data quality prediction in multimode processes
-
to be published
-
L. Yao and Z. Ge, "Scalable semi-supervised GMM for big data quality prediction in multimode processes," IEEE Trans. Ind. Electron., to be published, doi: 10.1109/TIE.2018.2856200.
-
IEEE Trans. Ind. Electron.
-
-
Yao, L.1
Ge, Z.2
-
30
-
-
85028847875
-
Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application
-
Feb.
-
L. Yao and Z. Ge, "Deep learning of semisupervised process data with hierarchical extreme learning machine and soft sensor application," IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1490-1498, Feb. 2018.
-
(2018)
IEEE Trans. Ind. Electron.
, vol.65
, Issue.2
, pp. 1490-1498
-
-
Yao, L.1
Ge, Z.2
|