메뉴 건너뛰기




Volumn 348, Issue , 2018, Pages 75-101

CHI-BD: A fuzzy rule-based classification system for Big Data classification problems

Author keywords

Big Data; Fuzzy Rule Based Classification Systems; Hadoop; Imbalanced datasets; MapReduce

Indexed keywords

BIG DATA; CLUSTER COMPUTING; FUZZY INFERENCE; FUZZY RULES; PROBLEM SOLVING;

EID: 85025479657     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2017.07.003     Document Type: Article
Times cited : (76)

References (44)
  • 1
    • 84878195422 scopus 로고    scopus 로고
    • The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far East
    • Gantz, J., Reinsel, D., The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far East. http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf.
    • Gantz, J.1    Reinsel, D.2
  • 2
    • 84866002283 scopus 로고    scopus 로고
    • What is big data?
    • Forbes
    • Arthur, L., What is big data?. Forbes http://www.forbes.com/sites/lisaarthur/2013/08/15/what-is-big-data/.
    • Arthur, L.1
  • 3
    • 84919389514 scopus 로고    scopus 로고
    • Beyond the hype: big data concepts, methods, and analytics
    • Gandomi, A., Haider, M., Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manag. 35:2 (2015), 137–144.
    • (2015) Int. J. Inf. Manag. , vol.35 , Issue.2 , pp. 137-144
    • Gandomi, A.1    Haider, M.2
  • 5
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: simplified data processing on large clusters
    • Dean, J., Ghemawat, S., MapReduce: simplified data processing on large clusters. Commun. ACM 51:1 (2008), 107–113.
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 6
    • 84886452143 scopus 로고    scopus 로고
    • Cloud Architecture Patterns
    • O'Reilly Media
    • Wilder, B., Cloud Architecture Patterns. 2012, O'Reilly Media.
    • (2012)
    • Wilder, B.1
  • 7
    • 23944451642 scopus 로고    scopus 로고
    • Classification and Modeling with Inguistic Information Granules: Advanced Approaches to Linguistic Data Mi Ning
    • Springer-Verlag
    • Ishibuchi, H., Nakashima, T., Nii, M., Classification and Modeling with Inguistic Information Granules: Advanced Approaches to Linguistic Data Mi Ning. 2004, Springer-Verlag.
    • (2004)
    • Ishibuchi, H.1    Nakashima, T.2    Nii, M.3
  • 8
    • 33747067136 scopus 로고    scopus 로고
    • Interpretable gene expression classifier with an accurate and compact fuzzy rule base for microarray data analysis
    • Ho, S., Hsieh, C., Chen, H., Huang, H., Interpretable gene expression classifier with an accurate and compact fuzzy rule base for microarray data analysis. Biosystems 85:3 (2006), 165–176.
    • (2006) Biosystems , vol.85 , Issue.3 , pp. 165-176
    • Ho, S.1    Hsieh, C.2    Chen, H.3    Huang, H.4
  • 9
    • 84885083743 scopus 로고    scopus 로고
    • A Hybrid Colony Fuzzy System for Analyzing Diabetes Microarray Data
    • Kumar, P., Vijay, S., Devaraj, D., A Hybrid Colony Fuzzy System for Analyzing Diabetes Microarray Data. 2013, 104–111.
    • (2013) , pp. 104-111
    • Kumar, P.1    Vijay, S.2    Devaraj, D.3
  • 10
    • 84901633982 scopus 로고    scopus 로고
    • Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system
    • Sanz, J., Galar, M., Jurio, A., Brugos, A., Pagola, M., Bustince, H., Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system. Appl. Soft Comput. J. 20 (2013), 103–111, 10.1016/j.asoc.2013.11.009.
    • (2013) Appl. Soft Comput. J. , vol.20 , pp. 103-111
    • Sanz, J.1    Galar, M.2    Jurio, A.3    Brugos, A.4    Pagola, M.5    Bustince, H.6
  • 11
    • 34247636165 scopus 로고    scopus 로고
    • Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection
    • Tsang, C., Kwong, S., Wang, H., Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection. Pattern Recognit. 40:9 (2007), 2373–2391.
    • (2007) Pattern Recognit. , vol.40 , Issue.9 , pp. 2373-2391
    • Tsang, C.1    Kwong, S.2    Wang, H.3
  • 12
    • 84938795155 scopus 로고    scopus 로고
    • A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data
    • Sanz, J., Bernardo, D., Herrera, F., Bustince, H., Hagras, H., A compact evolutionary interval-valued fuzzy rule-based classification system for the modeling and prediction of real-world financial applications with imbalanced data. IEEE Trans. Fuzzy Syst. 23:4 (2014), 973–990, 10.1109/TFUZZ.2014.2336263.
    • (2014) IEEE Trans. Fuzzy Syst. , vol.23 , Issue.4 , pp. 973-990
    • Sanz, J.1    Bernardo, D.2    Herrera, F.3    Bustince, H.4    Hagras, H.5
  • 13
    • 33845212542 scopus 로고    scopus 로고
    • A weighted fuzzy classifier and its application to image processing tasks
    • Nakashima, T., Schaefer, G., Yokota, Y., A weighted fuzzy classifier and its application to image processing tasks. Fuzzy Sets Syst. 158:3 (2007), 284–294.
    • (2007) Fuzzy Sets Syst. , vol.158 , Issue.3 , pp. 284-294
    • Nakashima, T.1    Schaefer, G.2    Yokota, Y.3
  • 14
    • 84911445875 scopus 로고    scopus 로고
    • Cost-sensitive linguistic fuzzy rule based classification systems under the mapreduce framework for imbalanced big data
    • López, V., del Río, S., Benítez, M., Herrera, F., Cost-sensitive linguistic fuzzy rule based classification systems under the mapreduce framework for imbalanced big data. Fuzzy Sets Syst. 258:0 (2015), 5–38.
    • (2015) Fuzzy Sets Syst. , vol.258 , pp. 5-38
    • López, V.1    del Río, S.2    Benítez, M.3    Herrera, F.4
  • 15
    • 0004084763 scopus 로고    scopus 로고
    • Fuzzy Algorithms with Applications to Image Processing and Pattern Recognition
    • World Scientific
    • Chi, Z., Yan, H., Pham, T., Fuzzy Algorithms with Applications to Image Processing and Pattern Recognition. 1996, World Scientific.
    • (1996)
    • Chi, Z.1    Yan, H.2    Pham, T.3
  • 16
    • 26844469668 scopus 로고    scopus 로고
    • Rule weight specification in fuzzy rule-based classification systems
    • Ishibuchi, H., Yamamoto, T., Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 13:4 (2005), 428–435.
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.4 , pp. 428-435
    • Ishibuchi, H.1    Yamamoto, T.2
  • 17
    • 84886567160 scopus 로고    scopus 로고
    • UCI machine learning repository
    • Lichman, M., UCI machine learning repository. http://archive.ics.uci.edu/ml, 2013.
    • (2013)
    • Lichman, M.1
  • 18
    • 0026870271 scopus 로고
    • Parallel database systems: the future of high performance database systems
    • DeWitt, D., Gray, J., Parallel database systems: the future of high performance database systems. Commun. ACM 35:6 (1992), 85–98.
    • (1992) Commun. ACM , vol.35 , Issue.6 , pp. 85-98
    • DeWitt, D.1    Gray, J.2
  • 19
  • 21
    • 84954561357 scopus 로고    scopus 로고
    • Capacities and overlap indexes with an application in fuzzy rule-based classification systems
    • Paternain, D., Bustince, H., Pagola, M., Sussner, P., Kolesárová A., Mesiar, R., Capacities and overlap indexes with an application in fuzzy rule-based classification systems. Fuzzy Sets Syst. 305 (2016), 70–94.
    • (2016) Fuzzy Sets Syst. , vol.305 , pp. 70-94
    • Paternain, D.1    Bustince, H.2    Pagola, M.3    Sussner, P.4    Kolesárová, A.5    Mesiar, R.6
  • 22
    • 0032655554 scopus 로고    scopus 로고
    • A proposal on reasoning methods in fuzzy rule-based classification systems
    • Cordón, O., del Jesus, M., Herrera, F., A proposal on reasoning methods in fuzzy rule-based classification systems. Int. J. Approx. Reason. 20:1 (1999), 21–45.
    • (1999) Int. J. Approx. Reason. , vol.20 , Issue.1 , pp. 21-45
    • Cordón, O.1    del Jesus, M.2    Herrera, F.3
  • 23
    • 84862515469 scopus 로고    scopus 로고
    • A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches
    • Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. 42:4 (2011), 463–484.
    • (2011) IEEE Trans. Syst. Man Cybern. , vol.42 , Issue.4 , pp. 463-484
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 24
    • 84911448717 scopus 로고    scopus 로고
    • Parallel sampling from big data with uncertainty distribution
    • He, Q., Wang, H., Zhuang, F., Shang, T., Shi, Z., Parallel sampling from big data with uncertainty distribution. Fuzzy Sets Syst. 258 (2015), 117–133.
    • (2015) Fuzzy Sets Syst. , vol.258 , pp. 117-133
    • He, Q.1    Wang, H.2    Zhuang, F.3    Shang, T.4    Shi, Z.5
  • 25
    • 84912100031 scopus 로고    scopus 로고
    • MRPR: a mapreduce solution for prototype reduction in big data classification
    • Triguero, I., Peralta, D., Bacardit, J., García, S., Herrera, F., MRPR: a mapreduce solution for prototype reduction in big data classification. Neurocomputing 150:PA (2015), 331–345.
    • (2015) Neurocomputing , vol.150 , Issue.PA , pp. 331-345
    • Triguero, I.1    Peralta, D.2    Bacardit, J.3    García, S.4    Herrera, F.5
  • 26
    • 84892438289 scopus 로고    scopus 로고
    • Mr-dbscan: a scalable mapreduce-based dbscan algorithm for heavily skewed data
    • He, Y., Tan, H., Luo, W., Feng, S., Fan, J., Mr-dbscan: a scalable mapreduce-based dbscan algorithm for heavily skewed data. Front. Comput. Sci. 8:1 (2014), 83–99.
    • (2014) Front. Comput. Sci. , vol.8 , Issue.1 , pp. 83-99
    • He, Y.1    Tan, H.2    Luo, W.3    Feng, S.4    Fan, J.5
  • 27
    • 84896527723 scopus 로고    scopus 로고
    • Dbcure-mr: an efficient density-based clustering algorithm for large data using mapreduce
    • Kim, Y., Shim, K., Kim, M.-S., Lee, J.S., Dbcure-mr: an efficient density-based clustering algorithm for large data using mapreduce. Inf. Sci. 42 (2014), 15–35.
    • (2014) Inf. Sci. , vol.42 , pp. 15-35
    • Kim, Y.1    Shim, K.2    Kim, M.-S.3    Lee, J.S.4
  • 28
    • 84155181855 scopus 로고    scopus 로고
    • Large-scale data sets clustering based on mapreduce and hadoop
    • Zhou, P., Lei, J., Ye, W., Large-scale data sets clustering based on mapreduce and hadoop. J. Comput. Inf. Syst. 7:16 (2011), 5956–5963.
    • (2011) J. Comput. Inf. Syst. , vol.7 , Issue.16 , pp. 5956-5963
    • Zhou, P.1    Lei, J.2    Ye, W.3
  • 30
    • 84960411888 scopus 로고    scopus 로고
    • A parallel and incremental approach for data-intensive learning of Bayesian networks
    • Yue, K., Fang, Q., Wang, X., Li, J., Liu, W., A parallel and incremental approach for data-intensive learning of Bayesian networks. IEEE Trans. Cybern. 45:12 (2015), 2890–2904, 10.1109/TCYB.2015.2388791.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.12 , pp. 2890-2904
    • Yue, K.1    Fang, Q.2    Wang, X.3    Li, J.4    Liu, W.5
  • 32
    • 84922020979 scopus 로고    scopus 로고
    • Distributed extreme learning machine with kernels based on mapreduce
    • Bi, X., Zhao, X., Wang, G., Zhang, P., Wang, C., Distributed extreme learning machine with kernels based on mapreduce. Neurocomputing 149:PA (2015), 456–463.
    • (2015) Neurocomputing , vol.149 , Issue.PA , pp. 456-463
    • Bi, X.1    Zhao, X.2    Wang, G.3    Zhang, P.4    Wang, C.5
  • 33
    • 84953350277 scopus 로고    scopus 로고
    • MR-ELM: a MapReduce-based framework for large-scale ELM training in big data era
    • Chen, J., Chen, H., Wan, X., Zheng, G., MR-ELM: a MapReduce-based framework for large-scale ELM training in big data era. Neural Comput. Appl. 27:1 (2016), 101–110.
    • (2016) Neural Comput. Appl. , vol.27 , Issue.1 , pp. 101-110
    • Chen, J.1    Chen, H.2    Wan, X.3    Zheng, G.4
  • 34
    • 84922020238 scopus 로고    scopus 로고
    • Parallel online sequential extreme learning machine based on mapreduce
    • Wang, B., Huang, S., Qiu, J., Liu, Y., Wang, G., Parallel online sequential extreme learning machine based on mapreduce. Neurocomputing 149:3 (2015), 224–232.
    • (2015) Neurocomputing , vol.149 , Issue.3 , pp. 224-232
    • Wang, B.1    Huang, S.2    Qiu, J.3    Liu, Y.4    Wang, G.5
  • 36
    • 84906935098 scopus 로고    scopus 로고
    • A mapreduce based parallel SVM for large-scale predicting protein–protein interactions
    • You, Z.-H., Yu, J.-Z., Zhu, L., Li, S., Wen, Z.-K., A mapreduce based parallel SVM for large-scale predicting protein–protein interactions. Neurocomputing 145 (2014), 37–43.
    • (2014) Neurocomputing , vol.145 , pp. 37-43
    • You, Z.-H.1    Yu, J.-Z.2    Zhu, L.3    Li, S.4    Wen, Z.-K.5
  • 37
    • 84924215936 scopus 로고    scopus 로고
    • A mapreduce approach to address big data classification problems based on the fusion of linguistic fuzzy rules
    • del Río, S., López, V., Benítez, J.M., Herrera, F., A mapreduce approach to address big data classification problems based on the fusion of linguistic fuzzy rules. Int. J. Comput. Intell. Syst. 8:3 (2015), 422–437.
    • (2015) Int. J. Comput. Intell. Syst. , vol.8 , Issue.3 , pp. 422-437
    • del Río, S.1    López, V.2    Benítez, J.M.3    Herrera, F.4
  • 40
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes
    • Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 44:8 (2011), 1761–1776.
    • (2011) Pattern Recognit. , vol.44 , Issue.8 , pp. 1761-1776
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 41
    • 14644390912 scopus 로고    scopus 로고
    • Using auc and accuracy in evaluating learning algorithms
    • Huang, J., Ling, C., Using auc and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 17:3 (2005), 299–310.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.3 , pp. 299-310
    • Huang, J.1    Ling, C.2
  • 42
    • 0036522693 scopus 로고    scopus 로고
    • Strategies for learning in class imbalance problems
    • Barandela, R., Sánchez, J., García, V., Rangel, E., Strategies for learning in class imbalance problems. Pattern Recognit. 36:3 (2003), 849–851.
    • (2003) Pattern Recognit. , vol.36 , Issue.3 , pp. 849-851
    • Barandela, R.1    Sánchez, J.2    García, V.3    Rangel, E.4
  • 43
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon, F., Individual comparisons by ranking methods. Biometrics 1:6 (1945), 80–83.
    • (1945) Biometrics , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 44
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparison of classifiers over multiple data sets
    • Demšar, J., Statistical comparison of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006), 1–30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.