메뉴 건너뛰기




Volumn 67, Issue 4, 2020, Pages 3277-3287

A novel application of deep belief networks in learning partial discharge patterns for classifying corona, surface, and internal discharges

Author keywords

Deep belief networks (DBNs); partial discharge (PD); pattern recognition; statistical moments; vector norms

Indexed keywords

BAYESIAN NETWORKS; DATA MINING; EXTRACTION; FEATURE EXTRACTION; FUZZY INFERENCE; FUZZY LOGIC; FUZZY NEURAL NETWORKS; PARTIAL DISCHARGES; PATTERN RECOGNITION; SUPPORT VECTOR MACHINES; SURFACE DISCHARGES;

EID: 85076638401     PISSN: 02780046     EISSN: 15579948     Source Type: Journal    
DOI: 10.1109/TIE.2019.2908580     Document Type: Article
Times cited : (109)

References (43)
  • 1
    • 0000056642 scopus 로고
    • Partial discharge pattern classification using multilayer neural networks
    • Jul.
    • L. Satish and B. Gururaj, "Partial discharge pattern classification using multilayer neural networks, " IEE Proc. A Sci., Meas. Technol., vol. 140, no. 4, pp. 323-330, Jul. 1993.
    • (1993) IEE Proc. A Sci., Meas. Technol. , vol.140 , Issue.4 , pp. 323-330
    • Satish, L.1    Gururaj, B.2
  • 2
    • 0033877402 scopus 로고    scopus 로고
    • Random sampling and data processing for PD-pulse height and shape analysis
    • Feb.
    • G. Montanari, A. Contin, and A. Cavallini, "Random sampling and data processing for PD-pulse height and shape analysis, " IEEE Trans. Dielect. Elect. Insul., vol. 7, no. 1, pp. 30-39, Feb. 2000.
    • (2000) IEEE Trans. Dielect. Elect. Insul. , vol.7 , Issue.1 , pp. 30-39
    • Montanari, G.1    Contin, A.2    Cavallini, A.3
  • 4
    • 20744436230 scopus 로고    scopus 로고
    • Trends in partial discharge pattern classification:Asurvey
    • Apr.
    • N. Sahoo, M. Salama, and R. Bartnikas, "Trends in partial discharge pattern classification:Asurvey, " IEEE Trans. Dielect. Elect. Insul., vol. 12, no. 2, pp. 248-264, Apr. 2005.
    • (2005) IEEE Trans. Dielect. Elect. Insul. , vol.12 , Issue.2 , pp. 248-264
    • Sahoo, N.1    Salama, M.2    Bartnikas, R.3
  • 5
    • 0029388084 scopus 로고
    • Automated recognition of partial discharges
    • Oct.
    • A. Krivda, "Automated recognition of partial discharges, " IEEE Trans. Dielect. Elect. Insul., vol. 2, no. 5, pp. 796-821, Oct. 1995.
    • (1995) IEEE Trans. Dielect. Elect. Insul. , vol.2 , Issue.5 , pp. 796-821
    • Krivda, A.1
  • 6
    • 0029389655 scopus 로고
    • Development of computer-based measurements and their application to PD pattern analysis
    • Oct.
    • R. James and B. Phung, "Development of computer-based measurements and their application to PD pattern analysis, " IEEE Trans. Dielect. Elect. Insul., vol. 2, no. 5, pp. 838-856, Oct. 1995.
    • (1995) IEEE Trans. Dielect. Elect. Insul. , vol.2 , Issue.5 , pp. 838-856
    • James, R.1    Phung, B.2
  • 7
    • 0029386273 scopus 로고
    • Digital analysis of partial discharges
    • Oct.
    • E. Gulski, "Digital analysis of partial discharges, " IEEE Trans. Dielect. Elect. Insul., vol. 2, no. 5, pp. 822-837, Oct. 1995.
    • (1995) IEEE Trans. Dielect. Elect. Insul. , vol.2 , Issue.5 , pp. 822-837
    • Gulski, E.1
  • 8
    • 0027808474 scopus 로고
    • Neural networks as a tool for recognition of partial discharges
    • Dec.
    • E. Gulski and A. Krivda, "Neural networks as a tool for recognition of partial discharges, " IEEE Trans. Elect. Insul., vol. 28, no. 6, pp. 984-1001, Dec. 1993.
    • (1993) IEEE Trans. Elect. Insul. , vol.28 , Issue.6 , pp. 984-1001
    • Gulski, E.1    Krivda, A.2
  • 9
    • 0036817485 scopus 로고    scopus 로고
    • Partial discharges. Their mechanism, detection and measurement
    • Oct.
    • R. Bartnikas, "Partial discharges. Their mechanism, detection and measurement, " IEEE Trans. Dielect. Elect. Insul., vol. 9, no. 5, pp. 763-808, Oct. 2002.
    • (2002) IEEE Trans. Dielect. Elect. Insul. , vol.9 , Issue.5 , pp. 763-808
    • Bartnikas, R.1
  • 10
    • 0027850321 scopus 로고
    • Classification of partial discharges
    • Dec.
    • F. Kreuger, E. Gulski, and A. Krivda, "Classification of partial discharges, " IEEE Trans. Elect. Insul., vol. 28, no. 6, pp. 917-931, Dec. 1993.
    • (1993) IEEE Trans. Elect. Insul. , vol.28 , Issue.6 , pp. 917-931
    • Kreuger, F.1    Gulski, E.2    Krivda, A.3
  • 11
    • 0026818771 scopus 로고
    • Computer-aided recognition of discharge sources
    • Feb.
    • E. Gulski and F. Kreuger, "Computer-aided recognition of discharge sources, " IEEE Trans. Elect. Insul., vol. 27, no. 1, pp. 82-92, Feb. 1992.
    • (1992) IEEE Trans. Elect. Insul. , vol.27 , Issue.1 , pp. 82-92
    • Gulski, E.1    Kreuger, F.2
  • 12
    • 77249107870 scopus 로고    scopus 로고
    • Partial discharge source discrimination using a support vector machine
    • Feb.
    • L. Hao and P. Lewin, "Partial discharge source discrimination using a support vector machine, " IEEE Trans. Dielect. Elect. Insul., vol. 17, no. 1, pp. 189-197, Feb. 2010.
    • (2010) IEEE Trans. Dielect. Elect. Insul. , vol.17 , Issue.1 , pp. 189-197
    • Hao, L.1    Lewin, P.2
  • 13
    • 84880346490 scopus 로고    scopus 로고
    • Spectral features for the classification of partial discharge signals from selected insulation defect models
    • R. Ambikairajah, B. T. Phung, J. Ravishankar, and T. Blackburn, "Spectral features for the classification of partial discharge signals from selected insulation defect models, " IET Sci., Meas. Technol., vol. 7, pp. 104-111, 2013.
    • (2013) IET Sci., Meas. Technol. , vol.7 , pp. 104-111
    • Ambikairajah, R.1    Phung, B.T.2    Ravishankar, J.3    Blackburn, T.4
  • 14
    • 84976892406 scopus 로고    scopus 로고
    • An investigative study into the sensitivity of different partial discharge-q-n pattern resolution sizes on statistical neural network pattern classification
    • A. A. Mas'ud, B. G. Stewart, and S. G. McMeekin, "An investigative study into the sensitivity of different partial discharge-q-n pattern resolution sizes on statistical neural network pattern classification, " Measurement, vol. 92, pp. 497-507, 2016.
    • (2016) Measurement , vol.92 , pp. 497-507
    • Mas'Ud, A.A.1    Stewart, B.G.2    McMeekin, S.G.3
  • 15
    • 84979582606 scopus 로고    scopus 로고
    • A method for the behavioral analysis of partial discharges in hydrogenerators by generalized linear models
    • F. Gomes, T. Oliveira, F. Brazil, A. Pamplona, V. Farias, and A. Silveira, "A method for the behavioral analysis of partial discharges in hydrogenerators by generalized linear models, " Elect. Power Syst. Res., vol. 140, pp. 284-287, 2016.
    • (2016) Elect. Power Syst. Res. , vol.140 , pp. 284-287
    • Gomes, F.1    Oliveira, T.2    Brazil, F.3    Pamplona, A.4    Farias, V.5    Silveira, A.6
  • 16
    • 84989324625 scopus 로고    scopus 로고
    • Partial discharge pattern recognition method based on variable predictive model-based class discriminate and partial least squares regression
    • Y. Zhu, Y. Jia, and L. Wang, "Partial discharge pattern recognition method based on variable predictive model-based class discriminate and partial least squares regression, " IET Sci., Meas. Technol., vol. 10, pp. 737-744, 2016.
    • (2016) IET Sci., Meas. Technol. , vol.10 , pp. 737-744
    • Zhu, Y.1    Jia, Y.2    Wang, L.3
  • 17
    • 84907487445 scopus 로고    scopus 로고
    • Improving pattern recognition accuracy of partial discharges by new data preprocessing methods
    • M. Majidi and M. Oskuoee, "Improving pattern recognition accuracy of partial discharges by new data preprocessing methods, " Elect. Power Syst. Res., vol. 119, pp. 100-110, 2015.
    • (2015) Elect. Power Syst. Res. , vol.119 , pp. 100-110
    • Majidi, M.1    Oskuoee, M.2
  • 18
    • 0041410083 scopus 로고    scopus 로고
    • Using improved self-organizing map for partial discharge diagnosis of large turbogenerators
    • Sep.
    • Y. Han and Y. Song, "Using improved self-organizing map for partial discharge diagnosis of large turbogenerators, " IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 392-399, Sep. 2003.
    • (2003) IEEE Trans. Energy Convers. , vol.18 , Issue.3 , pp. 392-399
    • Han, Y.1    Song, Y.2
  • 19
    • 84928109599 scopus 로고    scopus 로고
    • Partial discharge pattern recognition via sparse representation and ANN
    • Apr.
    • M. Majidi, M. S. Fadali, M. Etezadi-Amoli, and M. Oskuoee, "Partial discharge pattern recognition via sparse representation and ANN, " IEEE Trans. Dielect. Elect. Insul., vol. 22, no. 2, pp. 1061-1070, Apr. 2015.
    • (2015) IEEE Trans. Dielect. Elect. Insul. , vol.22 , Issue.2 , pp. 1061-1070
    • Majidi, M.1    Fadali, M.S.2    Etezadi-Amoli, M.3    Oskuoee, M.4
  • 20
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Aug.
    • Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 21
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towardsAI
    • Y. Bengio andY. LeCun, "Scaling learning algorithms towardsAI, " Large-Scale Kernel Mach., vol. 34, pp. 1-41, 2007.
    • (2007) Large-Scale Kernel Mach. , vol.34 , pp. 1-41
    • Bengio, Y.1    LeCun, Y.2
  • 22
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Science, vol. 313, pp. 504-507, 2006.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 23
    • 85021412201 scopus 로고    scopus 로고
    • Assessment of PD severity in gas-insulated switchgear with an SSAE
    • J. Tang, M. Jin, F. Zeng, X. Zhang, and R. Huang, "Assessment of PD severity in gas-insulated switchgear with an SSAE, " IET Sci., Meas. Technol., vol. 11, pp. 423-430, 2017.
    • (2017) IET Sci., Meas. Technol. , vol.11 , pp. 423-430
    • Tang, J.1    Jin, M.2    Zeng, F.3    Zhang, X.4    Huang, R.5
  • 24
    • 33847696897 scopus 로고    scopus 로고
    • Anovelwavelet transform technique for on-line partial discharge measurements. 1. WT denoising algorithm
    • Feb.
    • H. Zhang, T. Blackburn, B. Phung, andD. Sen, "Anovelwavelet transform technique for on-line partial discharge measurements. 1. WT denoising algorithm, " IEEE Trans. Dielect. Elect. Insul., vol. 14, no. 1, pp. 3-14, Feb. 2007.
    • (2007) IEEE Trans. Dielect. Elect. Insul. , vol.14 , Issue.1 , pp. 3-14
    • Zhang, H.1    Blackburn, T.2    Phung, B.3    Sen, D.4
  • 25
    • 0037732564 scopus 로고    scopus 로고
    • Wavelet-based denoising of partial discharge signals buried in excessive noise and interference
    • Apr.
    • L. Satish and B. Nazneen, "Wavelet-based denoising of partial discharge signals buried in excessive noise and interference, " IEEE Trans. Dielect. Elect. Insul., vol. 10, no. 2, pp. 354-367, Apr. 2003.
    • (2003) IEEE Trans. Dielect. Elect. Insul. , vol.10 , Issue.2 , pp. 354-367
    • Satish, L.1    Nazneen, B.2
  • 27
    • 84955693855 scopus 로고    scopus 로고
    • Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
    • F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, "Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, " Mech. Syst. Signal Process., vol. 72, pp. 303-315, 2016.
    • (2016) Mech. Syst. Signal Process. , vol.72 , pp. 303-315
    • Jia, F.1    Lei, Y.2    Lin, J.3    Zhou, X.4    Lu, N.5
  • 29
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, "A learning algorithm for Boltzmann machines, " Cogn. Sci., vol. 9, pp. 147-169, 1985.
    • (1985) Cogn. Sci. , vol.9 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 30
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on deep belief network
    • Jun.
    • Y. Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyperspectral data based on deep belief network, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381-2392, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2381-2392
    • Chen, Y.1    Zhao, X.2    Jia, X.3
  • 32
    • 84928170467 scopus 로고    scopus 로고
    • Learning deep generative models
    • R. Salakhutdinov, "Learning deep generative models, " Ann. ReviewStatist. Appl., vol. 2, pp. 361-385, 2015.
    • (2015) Ann. ReviewStatist. Appl. , vol.2 , pp. 361-385
    • Salakhutdinov, R.1
  • 33
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton, "Training products of experts by minimizing contrastive divergence, " Neural Comput., vol. 14, pp. 1771-1800, 2002.
    • (2002) Neural Comput. , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 35
    • 84872506495 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • Berlin, Germany: Springer
    • G. E. Hinton, "A practical guide to training restricted Boltzmann machines, " in Neural Networks: Tricks of the Trade. Berlin, Germany: Springer, 2012, pp. 599-619.
    • (2012) Neural Networks: Tricks of the Trade , pp. 599-619
    • Hinton, G.E.1
  • 36
    • 57349128872 scopus 로고    scopus 로고
    • Separability of ternary codes for sparse designs of error-correcting output codes
    • S. Escalera, O. Pujol, and P. Radeva, "Separability of ternary codes for sparse designs of error-correcting output codes, " Pattern Recognit. Lett., vol. 30, pp. 285-297, 2009.
    • (2009) Pattern Recognit. Lett. , vol.30 , pp. 285-297
    • Escalera, S.1    Pujol, O.2    Radeva, P.3
  • 37
    • 85015776079 scopus 로고    scopus 로고
    • High noise tolerance feature extraction for partial discharge classification in XLPE cable joints
    • Feb.
    • W. J. K. Raymond andH. A. Illias, "High noise tolerance feature extraction for partial discharge classification in XLPE cable joints, " IEEE Trans. Dielect. Elect. Insul., vol. 24, no. 1, pp. 66-74, Feb. 2017.
    • (2017) IEEE Trans. Dielect. Elect. Insul. , vol.24 , Issue.1 , pp. 66-74
    • Raymond, W.J.K.1    Illias, H.A.2
  • 38
    • 84978827246 scopus 로고    scopus 로고
    • Graph regularized non-negative low-rank matrix factorization for image clustering
    • Nov.
    • X. Li, G. Cui, and Y. Dong, "Graph regularized non-negative low-rank matrix factorization for image clustering, " IEEE Trans. Cybern., vol. 47, no. 11, 3840-3853, Nov. 2017.
    • (2017) IEEE Trans. Cybern. , vol.47 , Issue.11 , pp. 3840-3853
    • Li, X.1    Cui, G.2    Dong, Y.3
  • 39
    • 84946232826 scopus 로고    scopus 로고
    • Nonnegative multiresolution representationbased texture image classification
    • Y. Dong, D. Tao, and X. Li, "Nonnegative multiresolution representationbased texture image classification, " ACM Trans. Intell. Syst. Technol., vol. 7, pp. 1-21, 2015, Art. no. 4.
    • (2015) ACM Trans. Intell. Syst. Technol. , vol.7 , pp. 1-21
    • Dong, Y.1    Tao, D.2    Li, X.3
  • 40
    • 85028554018 scopus 로고    scopus 로고
    • Refined-graph regularization-based nonnegative matrix factorization
    • X. Li, G. Cui, and Y. Dong, "Refined-graph regularization-based nonnegative matrix factorization, " ACM Trans. Intell. Syst. Technol, vol. 9, pp. 1-21, 2017, Art. no. 1.
    • (2017) ACM Trans. Intell. Syst. Technol , vol.9 , pp. 1-21
    • Li, X.1    Cui, G.2    Dong, Y.3
  • 41
    • 85017177481 scopus 로고    scopus 로고
    • SCE: A manifold regularized setcovering method for data partitioning
    • May
    • X. Li, Q. Lu, Y. Dong, and D. Tao, "SCE: A manifold regularized setcovering method for data partitioning, " IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 5, pp. 1760-1773, May 2018.
    • (2018) IEEE Trans. Neural Netw. Learn. Syst. , vol.29 , Issue.5 , pp. 1760-1773
    • Li, X.1    Lu, Q.2    Dong, Y.3    Tao, D.4
  • 42
    • 85027931489 scopus 로고    scopus 로고
    • Texture classification and retrieval using shearlets and linear regression
    • Mar.
    • Y. Dong, D. Tao, X. Li, J. Ma, and J. Pu, "Texture classification and retrieval using shearlets and linear regression, " IEEE Trans. Cybern., vol. 45, no. 3, pp. 358-369, Mar. 2015.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.3 , pp. 358-369
    • Dong, Y.1    Tao, D.2    Li, X.3    Ma, J.4    Pu, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.