메뉴 건너뛰기




Volumn 49, Issue 2, 2019, Pages 91-100

Fault Prediction of Online Power Metering Equipment Based on Hierarchical Bayesian Network;Napovedovanje izpada na opremi merjenja moci na osnovi hierarhicne Bayesianove mreže

Author keywords

Failure rate; hierarchical Bayesian model; variable intercept; Weibull

Indexed keywords


EID: 85086010452     PISSN: 03529045     EISSN: 22326979     Source Type: Journal    
DOI: 10.33180/InfMIDEM2019.205     Document Type: Article
Times cited : (4)

References (24)
  • 3
    • 84960799300 scopus 로고    scopus 로고
    • A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining
    • Q. Xu, D. He, N. Zhang, et al. "A Short-Term Wind Power Forecasting Approach With Adjustment of Numerical Weather Prediction Input by Data Mining," IEEE Transactions on Sustainable Energy, vol. 6, no. 4, pp. 1283-1291, 2015. https://doi.org/10.1109/TSTE.2015.2429586.
    • (2015) IEEE Transactions on Sustainable Energy , vol.6 , Issue.4 , pp. 1283-1291
    • Xu, Q.1    He, D.2    Zhang, N.3
  • 4
    • 85049400265 scopus 로고    scopus 로고
    • Canonical variate analysis, probability approach and support vector regression for fault identification and failure time prediction
    • X. Li, F. Duan, I. Bennett, et al. "Canonical variate analysis, probability approach and support vector regression for fault identification and failure time prediction," Journal of Intelligent & Fuzzy Systems, vol. 34, no. 6, pp. 3771-3783, 2018. https://doi.org/10.3233/JIFS-169550.
    • (2018) Journal of Intelligent & Fuzzy Systems , vol.34 , Issue.6 , pp. 3771-3783
    • Li, X.1    Duan, F.2    Bennett, I.3
  • 5
    • 84919729802 scopus 로고    scopus 로고
    • Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network
    • J. Ben Ali, B. Chebel-Morello, L Saidi, et al. "Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network," Mechanical Systems and Signal Processing, vol. 56-57, pp. 150-172, 2015. https://doi.org/10.1016/j.ymssp.2014.10.014.
    • (2015) Mechanical Systems and Signal Processing , vol.56-57 , pp. 150-172
    • Ben Ali, J.1    Chebel-Morello, B.2    Saidi, L3
  • 6
    • 84961129025 scopus 로고    scopus 로고
    • Performance-Driven Distributed PCA Process Monitoring Based on Fault-Relevant Variable Selection and Bayesian Inference
    • Q. Jiang, X. Yan, B. Huang. "Performance-Driven Distributed PCA Process Monitoring Based on Fault-Relevant Variable Selection and Bayesian Inference," IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 377-386, 2016. https://doi.org/10.1109/TIE.2015.2466557.
    • (2016) IEEE Transactions on Industrial Electronics , vol.63 , Issue.1 , pp. 377-386
    • Jiang, Q.1    Yan, X.2    Huang, B.3
  • 7
    • 84886010646 scopus 로고    scopus 로고
    • Optimal variable selection for effective statistical process monitoring
    • K. Ghosh, M. Ramteke, R. Srinivasan. "Optimal variable selection for effective statistical process monitoring," Computers & Chemical Engineering, vol. 60, no. 10, pp. 260-276, 2014. https://doi.org/10.1016/j.compchemeng.2013.09.014.
    • (2014) Computers & Chemical Engineering , vol.60 , Issue.10 , pp. 260-276
    • Ghosh, K.1    Ramteke, M.2    Srinivasan, R.3
  • 9
    • 85010210722 scopus 로고    scopus 로고
    • System-Level Electric Field Exposure Assessment by the Fault Tree Analysis
    • L. Jin, C. Peng, T. Jiang. "System-Level Electric Field Exposure Assessment by the Fault Tree Analysis," IEEE Transactions on Electromagnetic Compatibility, vol. 59, no. 4, pp. 1095-1102, 2017. https://doi.org/10.1109/TEMC.2017.2647961
    • (2017) IEEE Transactions on Electromagnetic Compatibility , vol.59 , Issue.4 , pp. 1095-1102
    • Jin, L.1    Peng, C.2    Jiang, T.3
  • 10
    • 84892569845 scopus 로고    scopus 로고
    • Short-Term Wind Power Ensemble Prediction Based on Gaussian Processes and Neural Networks
    • D. Lee, R. Baldick. "Short-Term Wind Power Ensemble Prediction Based on Gaussian Processes and Neural Networks," IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 501-510, 2014. https://doi.org/10.1109/TSG.2013.2280649.
    • (2014) IEEE Transactions on Smart Grid , vol.5 , Issue.1 , pp. 501-510
    • Lee, D.1    Baldick, R.2
  • 11
    • 85028457327 scopus 로고    scopus 로고
    • Nonparametric-Condition-Based Remaining Useful Life Prediction Incorporating External Factors
    • R. Kontar, S. Zhou, C. Sankavaram, et al. "Nonparametric-Condition-Based Remaining Useful Life Prediction Incorporating External Factors," IEEE Transactions on Reliability, vol. 67, no. 1, pp. 41- 52, 2018. https://doi.org/10.1109/TR.2017.2717190.
    • (2018) IEEE Transactions on Reliability , vol.67 , Issue.1 , pp. 41-52
    • Kontar, R.1    Zhou, S.2    Sankavaram, C.3
  • 12
    • 85055565220 scopus 로고    scopus 로고
    • Fuzzy evidence theory and Bayesian networks for process systems risk analysis
    • Yazdi M, Kabir S (2018). "Fuzzy evidence theory and Bayesian networks for process systems risk analysis". Hum Ecol Risk Assess An Int J (0),1-30. https://doi.org/10.1080/10807039.2018.1493679.
    • (2018) Hum Ecol Risk Assess An Int J , pp. 1-30
    • Yazdi, M1    Kabir, S2
  • 13
    • 85028607252 scopus 로고    scopus 로고
    • A fuzzy Bayesian network approach for risk analysis in process industries
    • Yazdi M, Kabir S (2017). "A fuzzy Bayesian network approach for risk analysis in process industries". Process Saf Environ Prot, (111) ,507-19. https://doi. org/10.1016/j.psep.2017.08.015.
    • (2017) Process Saf Environ Prot , Issue.111 , pp. 507-519
    • Yazdi, M1    Kabir, S2
  • 14
    • 57649097579 scopus 로고    scopus 로고
    • E-Bayesian estimation and hierarchical Bayesian estimation of failure rate
    • M. Han. "E-Bayesian estimation and hierarchical Bayesian estimation of failure rate," Applied Mathematical Modelling, vol. 33, no. 4, pp. 1915-1922, 2009. https://doi.org/10.1080/03610926.2010.498643.
    • (2009) Applied Mathematical Modelling , vol.33 , Issue.4 , pp. 1915-1922
    • Han, M.1
  • 15
    • 77949273838 scopus 로고    scopus 로고
    • Bayesian Analysis of Hazard Rate, Change Point, and Cost-Optimal Burn-In Time for Electronic Devices
    • T. Yuan, Y. Kuo. "Bayesian Analysis of Hazard Rate, Change Point, and Cost-Optimal Burn-In Time for Electronic Devices," IEEE Transactions on Reliability, vol. 59, no. 1, pp. 132-138, 2010. https://doi.org/10.1109/TR.2010.2040776.
    • (2010) IEEE Transactions on Reliability , vol.59 , Issue.1 , pp. 132-138
    • Yuan, T.1    Kuo, Y.2
  • 17
    • 84947301897 scopus 로고    scopus 로고
    • Prediction of vacuum cleaner motor brush life: a regression approach
    • B. Benedik, K. TaŠkova, J. Tavčar, et al. "Prediction of vacuum cleaner motor brush life: a regression approach," IET Electric Power Applications, vol. 9, no. 9, pp. 569-577, 2015. DOI: 10.1049/iet-epa.2014.0437. https://doi.org/10.1049/iet-epa.2014.0437
    • (2015) IET Electric Power Applications , vol.9 , Issue.9 , pp. 569-577
    • Benedik, B.1    TaŠkova, K.2    Tavčar, J.3
  • 18
    • 85031108435 scopus 로고    scopus 로고
    • Bayesian Networks in Fault Diagnosis
    • B. Cai. "Bayesian Networks in Fault Diagnosis," IEEE Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2227-2239, 2017. https://doi.org/10.1109/TII.2017.2695583.
    • (2017) IEEE Transactions on Industrial Informatics , vol.13 , Issue.5 , pp. 2227-2239
    • Cai, B.1
  • 19
    • 57649097579 scopus 로고    scopus 로고
    • E-Bayesian estimation and hierarchical Bayesian estimation of failure rate
    • M. Han. "E-Bayesian estimation and hierarchical Bayesian estimation of failure rate," Applied Mathematical Modelling, vol. 33, no. 4, pp. 1915-1922, 2009. https://doi.org/10.1080/03610926.2010.498643.
    • (2009) Applied Mathematical Modelling , vol.33 , Issue.4 , pp. 1915-1922
    • Han, M.1
  • 20
    • 84990201464 scopus 로고    scopus 로고
    • Probabilistic programming in Python using PyMC3
    • J. Salvatier, TV. Wiecki, C. Fonnesbeck. "Probabilistic programming in Python using PyMC3," PeerJ Computer Science, vol. 2, pp. e55, 2016. https://doi.org/10.7717/peerj-cs.55.
    • (2016) PeerJ Computer Science , vol.2 , pp. e55
    • Salvatier, J.1    Wiecki, TV.2    Fonnesbeck, C.3
  • 21
    • 85015195888 scopus 로고    scopus 로고
    • Fully Bayesian reliability assessment of multi-state systems with overlapping data
    • Z. Hao, J. Guo, S. Zeng. "Fully Bayesian reliability assessment of multi-state systems with overlapping data," Journal of Systems Engineering and Electronics, vol. 28, no. 1, pp. 187-198, 2017. https://doi.org/10.21629/JSEE.2017.01.21.
    • (2017) Journal of Systems Engineering and Electronics , vol.28 , Issue.1 , pp. 187-198
    • Hao, Z.1    Guo, J.2    Zeng, S.3
  • 22
    • 79551500649 scopus 로고    scopus 로고
    • Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory
    • S. Watanabe. "Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory," Journal of Machine Learning Research, vol. 11, no. 18, pp. 3571-3594, 2010. https://doi.org/10.1002/rnc.1572
    • (2010) Journal of Machine Learning Research , vol.11 , Issue.18 , pp. 3571-3594
    • Watanabe, S.1
  • 24
    • 85026299835 scopus 로고    scopus 로고
    • Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
    • A. Vehtari, A. Gelman, J. Gabry. "Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC," Statistics and Computing, vol. 27, no. 5, pp. 1413-1432, 2017. https://doi.org/10.1007/s11222-016-9696-4.
    • (2017) Statistics and Computing , vol.27 , Issue.5 , pp. 1413-1432
    • Vehtari, A.1    Gelman, A.2    Gabry, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.