메뉴 건너뛰기




Volumn 12, Issue 13, 2019, Pages

Partial discharge classification using deep learning methods - Survey of recent progress

Author keywords

Deep learning; Deep neural network; Fault diagnosis; Fault recognition; Machine learning; Partial discharges

Indexed keywords

AUTOMATION; DATA ACQUISITION; DATA MINING; DEEP LEARNING; DIGITAL STORAGE; FAILURE ANALYSIS; LEARNING SYSTEMS; MACHINE LEARNING; PARTIAL DISCHARGES; STRUCTURAL OPTIMIZATION;

EID: 85068444913     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en12132485     Document Type: Review
Times cited : (82)

References (33)
  • 1
    • 84877738019 scopus 로고    scopus 로고
    • Partial discharge diagnostics: From apparatus monitoring to smart grid assessment
    • [CrossRef]
    • Montanari, G.C.; Cavallini, A. Partial discharge diagnostics: from apparatus monitoring to smart grid assessment. IEEE Electr. Insul. Mag. 2013, 29, 8-17. [CrossRef]
    • (2013) IEEE Electr. Insul. Mag. , vol.29 , pp. 8-17
    • Montanari, G.C.1    Cavallini, A.2
  • 2
    • 28744457368 scopus 로고    scopus 로고
    • Partial discharge diagnostics and electrical equipment insulation condition assessment
    • [CrossRef]
    • Stone, G.C. Partial discharge diagnostics and electrical equipment insulation condition assessment. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 891-904. [CrossRef]
    • (2005) IEEE Trans. Dielectr. Electr. Insul. , vol.12 , pp. 891-904
    • Stone, G.C.1
  • 3
    • 84924974508 scopus 로고    scopus 로고
    • Partial discharge classifications: Review of recent progress
    • [CrossRef]
    • Raymond, W.J.K.; Illias, H.A.; Bakar, A.H.A.; Mokhlis, H. Partial discharge classifications: Review of recent progress. Measurement 2015, 68, 164-181. [CrossRef]
    • (2015) Measurement , vol.68 , pp. 164-181
    • Raymond, W.J.K.1    Illias, H.A.2    Bakar, A.H.A.3    Mokhlis, H.4
  • 4
    • 84982943783 scopus 로고    scopus 로고
    • Artificial neural network application for partial discharge recognition: Survey and future directions
    • [CrossRef]
    • Mas'ud, A.; Albarracín, R.; Ardila-Rey, J.; Muhammad-Sukki, F.; Illias, H.; Bani, N.; Munir, A. Artificial Neural Network Application for Partial Discharge Recognition: Survey and Future Directions. Energies 2016, 9, 574. [CrossRef]
    • (2016) Energies , vol.9 , pp. 574
    • Mas'ud, A.1    Albarracín, R.2    Ardila-Rey, J.3    Muhammad-Sukki, F.4    Illias, H.5    Bani, N.6    Munir, A.7
  • 7
    • 0026818771 scopus 로고
    • Computer-aided recognition of discharge sources
    • [CrossRef]
    • Gulski, E.; Kreuger, F.H. Computer-aided recognition of discharge sources. IEEE Trans. Electr. Insul. 1992, 27, 82-92. [CrossRef]
    • (1992) IEEE Trans. Electr. Insul. , vol.27 , pp. 82-92
    • Gulski, E.1    Kreuger, F.H.2
  • 9
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • [CrossRef] [PubMed]
    • Hinton, G.E.; Osindero, S.; Teh, Y.-W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006, 18, 1527-1554. [CrossRef] [PubMed]
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 10
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • [CrossRef] [PubMed]
    • Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735-1780. [CrossRef] [PubMed]
    • (1997) Neural Comput. , vol.9 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 15
    • 85047079482 scopus 로고    scopus 로고
    • Recurrent neural network for partial discharge diagnosis in gas-insulated switchgear
    • [CrossRef]
    • Nguyen, M.-T.; Nguyen, V.-H.; Yun, S.-J.; Kim, Y.-H. Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear. Energies 2018, 11, 1202. [CrossRef]
    • (2018) Energies , vol.11 , pp. 1202
    • Nguyen, M.-T.1    Nguyen, V.-H.2    Yun, S.-J.3    Kim, Y.-H.4
  • 19
    • 85021412201 scopus 로고    scopus 로고
    • Assessment of PD severity in gas-insulated switchgear with an SSAE
    • [CrossRef]
    • Tang, J.; Jin, M.; Zeng, F.; Zhang, X.; Huang, R. Assessment of PD severity in gas-insulated switchgear with an SSAE. IET Sci. Meas. Technol. 2017, 11, 423-430. [CrossRef]
    • (2017) IET Sci. Meas. Technol. , vol.11 , pp. 423-430
    • Tang, J.1    Jin, M.2    Zeng, F.3    Zhang, X.4    Huang, R.5
  • 24
    • 85055077813 scopus 로고    scopus 로고
    • Partial Discharge Recognition with a Multi-Resolution Convolutional Neural Network
    • [CrossRef] [PubMed]
    • Li, G.; Wang, X.; Li, X.; Yang, A.; Rong, M. Partial Discharge Recognition with a Multi-Resolution Convolutional Neural Network. Sensors 2018, 18, 3512. [CrossRef] [PubMed]
    • (2018) Sensors , vol.18 , pp. 3512
    • Li, G.1    Wang, X.2    Li, X.3    Yang, A.4    Rong, M.5
  • 25
    • 85044073992 scopus 로고    scopus 로고
    • A deep learning framework using convolution neural network for classification of impulse fault patterns in transformers with increased accuracy
    • [CrossRef]
    • Dey, D.; Chatterjee, B.; Dalai, S.; Munshi, S.; Chakravorti, S. A deep learning framework using convolution neural network for classification of impulse fault patterns in transformers with increased accuracy. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3894-3897. [CrossRef]
    • (2017) IEEE Trans. Dielectr. Electr. Insul. , vol.24 , pp. 3894-3897
    • Dey, D.1    Chatterjee, B.2    Dalai, S.3    Munshi, S.4    Chakravorti, S.5
  • 26
    • 85059092490 scopus 로고    scopus 로고
    • Partial discharge source classification for switchgears with transient earth voltage sensor using convolutional neural network
    • Perth, WA, Australia, 23-26 September
    • Banno, K.; Nakamura, Y.; Fujii, Y.; Takano, T. Partial Discharge Source Classification for Switchgears with Transient Earth Voltage Sensor Using Convolutional Neural Network. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, WA, Australia, 23-26 September 2018; pp. 1-5.
    • (2018) Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD) , pp. 1-5
    • Banno, K.1    Nakamura, Y.2    Fujii, Y.3    Takano, T.4
  • 27
    • 85059096365 scopus 로고    scopus 로고
    • Pattern recognition of partial discharge image based on one-dimensional convolutional neural network
    • Perth, WA, Australia, 23-26 September
    • Wan, X.; Song, H.; Luo, L.; Li, Z.; Sheng, G.; Jiang, X. Pattern Recognition of Partial Discharge Image Based on One-dimensional Convolutional Neural Network. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, WA, Australia, 23-26 September 2018; pp. 1-4.
    • (2018) Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD) , pp. 1-4
    • Wan, X.1    Song, H.2    Luo, L.3    Li, Z.4    Sheng, G.5    Jiang, X.6
  • 28
    • 85046089584 scopus 로고    scopus 로고
    • GIS partial discharge pattern recognition via deep convolutional neural network under complex data source
    • [CrossRef]
    • Song, H.; Dai, J.; Sheng, G.; Jiang, X. GIS partial discharge pattern recognition via deep convolutional neural network under complex data source. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 678-685. [CrossRef]
    • (2018) IEEE Trans. Dielectr. Electr. Insul. , vol.25 , pp. 678-685
    • Song, H.1    Dai, J.2    Sheng, G.3    Jiang, X.4
  • 30
    • 85059076692 scopus 로고    scopus 로고
    • Partial discharge pattern recognition with data augmentation based on generative adversarial networks
    • Perth, WA, Australia, 23-26 September
    • Wang, X.; Huang, H.; Hu, Y.; Yang, Y. Partial Discharge Pattern Recognition with Data Augmentation based on Generative Adversarial Networks. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, WA, Australia, 23-26 September 2018; pp. 1-4.
    • (2018) Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD) , pp. 1-4
    • Wang, X.1    Huang, H.2    Hu, Y.3    Yang, Y.4
  • 31
    • 85061749647 scopus 로고    scopus 로고
    • Partial discharge data augmentation of high voltage cables based on the variable noise superposition and generative adversarial network
    • Guangzhou, China, 6-8 November
    • Wu, Y.; Lu, C.;Wang, G.; Peng, X.; Liu, T.; Zhao, Y. Partial Discharge Data Augmentation of High Voltage Cables based on the Variable Noise Superposition and Generative Adversarial Network. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6-8 November 2018; pp. 3855-3859.
    • (2018) Proceedings of the 2018 International Conference on Power System Technology (POWERCON) , pp. 3855-3859
    • Wu, Y.1    Lu, C.2    Wang, G.3    Peng, X.4    Liu, T.5    Zhao, Y.6
  • 32
    • 85015804043 scopus 로고    scopus 로고
    • Application of the local polynomial Fourier transform in the evaluation of electrical signals generated by partial discharges in distribution transformers
    • [CrossRef]
    • Rojas, H.E.; Forero, M.C.; Cortes, C.A. Application of the local polynomial Fourier transform in the evaluation of electrical signals generated by partial discharges in distribution transformers. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 227-236. [CrossRef]
    • (2017) IEEE Trans. Dielectr. Electr. Insul. , vol.24 , pp. 227-236
    • Rojas, H.E.1    Forero, M.C.2    Cortes, C.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.