-
1
-
-
84877738019
-
Partial discharge diagnostics: From apparatus monitoring to smart grid assessment
-
[CrossRef]
-
Montanari, G.C.; Cavallini, A. Partial discharge diagnostics: from apparatus monitoring to smart grid assessment. IEEE Electr. Insul. Mag. 2013, 29, 8-17. [CrossRef]
-
(2013)
IEEE Electr. Insul. Mag.
, vol.29
, pp. 8-17
-
-
Montanari, G.C.1
Cavallini, A.2
-
2
-
-
28744457368
-
Partial discharge diagnostics and electrical equipment insulation condition assessment
-
[CrossRef]
-
Stone, G.C. Partial discharge diagnostics and electrical equipment insulation condition assessment. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 891-904. [CrossRef]
-
(2005)
IEEE Trans. Dielectr. Electr. Insul.
, vol.12
, pp. 891-904
-
-
Stone, G.C.1
-
3
-
-
84924974508
-
Partial discharge classifications: Review of recent progress
-
[CrossRef]
-
Raymond, W.J.K.; Illias, H.A.; Bakar, A.H.A.; Mokhlis, H. Partial discharge classifications: Review of recent progress. Measurement 2015, 68, 164-181. [CrossRef]
-
(2015)
Measurement
, vol.68
, pp. 164-181
-
-
Raymond, W.J.K.1
Illias, H.A.2
Bakar, A.H.A.3
Mokhlis, H.4
-
4
-
-
84982943783
-
Artificial neural network application for partial discharge recognition: Survey and future directions
-
[CrossRef]
-
Mas'ud, A.; Albarracín, R.; Ardila-Rey, J.; Muhammad-Sukki, F.; Illias, H.; Bani, N.; Munir, A. Artificial Neural Network Application for Partial Discharge Recognition: Survey and Future Directions. Energies 2016, 9, 574. [CrossRef]
-
(2016)
Energies
, vol.9
, pp. 574
-
-
Mas'ud, A.1
Albarracín, R.2
Ardila-Rey, J.3
Muhammad-Sukki, F.4
Illias, H.5
Bani, N.6
Munir, A.7
-
7
-
-
0026818771
-
Computer-aided recognition of discharge sources
-
[CrossRef]
-
Gulski, E.; Kreuger, F.H. Computer-aided recognition of discharge sources. IEEE Trans. Electr. Insul. 1992, 27, 82-92. [CrossRef]
-
(1992)
IEEE Trans. Electr. Insul.
, vol.27
, pp. 82-92
-
-
Gulski, E.1
Kreuger, F.H.2
-
8
-
-
20744436230
-
Trends in partial discharge pattern classification: A survey
-
[CrossRef]
-
Sahoo, N.C.; Salama, M.M.A.; Bartnikas, R. Trends in partial discharge pattern classification: A survey. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 248-264. [CrossRef]
-
(2005)
IEEE Trans. Dielectr. Electr. Insul.
, vol.12
, pp. 248-264
-
-
Sahoo, N.C.1
Salama, M.M.A.2
Bartnikas, R.3
-
9
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
[CrossRef] [PubMed]
-
Hinton, G.E.; Osindero, S.; Teh, Y.-W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006, 18, 1527-1554. [CrossRef] [PubMed]
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
10
-
-
0031573117
-
Long short-term memory
-
[CrossRef] [PubMed]
-
Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735-1780. [CrossRef] [PubMed]
-
(1997)
Neural Comput.
, vol.9
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
11
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
Helsinki, Finland, 5-9 July 2008; ACM Press: Helsinki, Finland
-
Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.-A. Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning - ICML '08, Helsinki, Finland, 5-9 July 2008; ACM Press: Helsinki, Finland, 2008; pp. 1096-1103.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning - ICML '08
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
12
-
-
84937849144
-
Generative adversarial nets
-
Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D.,Weinberger, K.Q., Eds.; Curran Associates, Inc.: Dutchess County, NY, USA
-
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Advances in Neural Information Processing Systems 27; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D.,Weinberger, K.Q., Eds.; Curran Associates, Inc.: Dutchess County, NY, USA, 2014; pp. 2672-2680.
-
(2014)
Advances in Neural Information Processing Systems 27
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
13
-
-
77955998889
-
Convolutional networks and applications in vision
-
Paris, France, 30 May-2 June
-
LeCun, Y.; Kavukcuoglu, K.; Farabet, C. Convolutional networks and applications in vision. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May-2 June 2010; pp. 253-256.
-
(2010)
Proceedings of the 2010 IEEE International Symposium on Circuits and Systems
, pp. 253-256
-
-
LeCun, Y.1
Kavukcuoglu, K.2
Farabet, C.3
-
14
-
-
84978372502
-
Deep neural networks for understanding and diagnosing partial discharge data
-
Seattle,WA, USA, 7-10 June
-
Catterson, V.M.; Sheng, B. Deep neural networks for understanding and diagnosing partial discharge data. In Proceedings of the 2015 IEEE Electrical Insulation Conference (EIC), Seattle,WA, USA, 7-10 June 2015; pp. 218-221.
-
(2015)
Proceedings of the 2015 IEEE Electrical Insulation Conference (EIC)
, pp. 218-221
-
-
Catterson, V.M.1
Sheng, B.2
-
15
-
-
85047079482
-
Recurrent neural network for partial discharge diagnosis in gas-insulated switchgear
-
[CrossRef]
-
Nguyen, M.-T.; Nguyen, V.-H.; Yun, S.-J.; Kim, Y.-H. Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear. Energies 2018, 11, 1202. [CrossRef]
-
(2018)
Energies
, vol.11
, pp. 1202
-
-
Nguyen, M.-T.1
Nguyen, V.-H.2
Yun, S.-J.3
Kim, Y.-H.4
-
16
-
-
85007256381
-
Training deep neural networks on imbalanced data sets
-
Vancouver, BC, Canada, 24-29 July
-
Wang, S.; Liu,W.; Wu, J.; Cao, L.; Meng, Q.; Kennedy, P.J. Training deep neural networks on imbalanced data sets. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24-29 July 2016; pp. 4368-4374.
-
(2016)
Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN)
, pp. 4368-4374
-
-
Wang, S.1
Liu, W.2
Wu, J.3
Cao, L.4
Meng, Q.5
Kennedy, P.J.6
-
17
-
-
84969645930
-
Deep learning for imbalanced multimedia data classification
-
Miami, FL, USA, 14-16 December
-
Yan, Y.; Chen, M.; Shyu, M.; Chen, S. Deep Learning for Imbalanced Multimedia Data Classification. In Proceedings of the 2015 IEEE International Symposium on Multimedia (ISM), Miami, FL, USA, 14-16 December 2015; pp. 483-488.
-
(2015)
Proceedings of the 2015 IEEE International Symposium on Multimedia (ISM)
, pp. 483-488
-
-
Yan, Y.1
Chen, M.2
Shyu, M.3
Chen, S.4
-
18
-
-
85063091455
-
Classification of multiple PD sources by signal features and LSTM networks
-
ATHENS, Greece, 10-13 September
-
Adam, B.; Tenbohlen, S. Classification of multiple PD Sources by Signal Features and LSTM Networks. In Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), ATHENS, Greece, 10-13 September 2018; pp. 1-4.
-
(2018)
Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE)
, pp. 1-4
-
-
Adam, B.1
Tenbohlen, S.2
-
19
-
-
85021412201
-
Assessment of PD severity in gas-insulated switchgear with an SSAE
-
[CrossRef]
-
Tang, J.; Jin, M.; Zeng, F.; Zhang, X.; Huang, R. Assessment of PD severity in gas-insulated switchgear with an SSAE. IET Sci. Meas. Technol. 2017, 11, 423-430. [CrossRef]
-
(2017)
IET Sci. Meas. Technol.
, vol.11
, pp. 423-430
-
-
Tang, J.1
Jin, M.2
Zeng, F.3
Zhang, X.4
Huang, R.5
-
20
-
-
85061717758
-
Partial discharge pattern recognition of high voltage cables based on the stacked denoising autoencoder method
-
Guangzhou, China, 6-8 November
-
Wang, G.; Yang, F.; Peng, X.;Wu, Y.; Liu, T.; Li, Z. Partial Discharge Pattern Recognition of High Voltage Cables Based on the Stacked Denoising Autoencoder Method. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6-8 November 2018; pp. 3778-3792.
-
(2018)
Proceedings of the 2018 International Conference on Power System Technology (POWERCON)
, pp. 3778-3792
-
-
Wang, G.1
Yang, F.2
Peng, X.3
Wu, Y.4
Liu, T.5
Li, Z.6
-
21
-
-
85053218998
-
Partial discharge classification using deep belief networks
-
Denver, CO, USA, 16-19 April
-
Karimi, M.; Majidi, M.; Etezadi-Amoli, M.; Oskuoee, M. Partial Discharge Classification Using Deep Belief Networks. In Proceedings of the 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Denver, CO, USA, 16-19 April 2018; pp. 1061-1070.
-
(2018)
Proceedings of the 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)
, pp. 1061-1070
-
-
Karimi, M.1
Majidi, M.2
Etezadi-Amoli, M.3
Oskuoee, M.4
-
22
-
-
85020310785
-
Convolutional neural network based transient earth voltage detection
-
Fuzhou, China, 8-10 July
-
Lu, Y.;Wei, R.; Chen, J.; Yuan, J. Convolutional Neural Network Based Transient Earth Voltage Detection. In Proceedings of the 2016 15th International Symposium on Parallel and Distributed Computing (ISPDC), Fuzhou, China, 8-10 July 2016; pp. 386-389.
-
(2016)
Proceedings of the 2016 15th International Symposium on Parallel and Distributed Computing (ISPDC)
, pp. 386-389
-
-
Lu, Y.1
Wei, R.2
Chen, J.3
Yuan, J.4
-
23
-
-
85007233515
-
Partial discharge patterns recognition with deep Convolutional Neural Networks
-
Xi'an, China, 25-28 September
-
Li, G.; Rong, M.;Wang, X.; Li, X.; Li, Y. Partial discharge patterns recognition with deep Convolutional Neural Networks. In Proceedings of the 2016 International Conference on Condition Monitoring and Diagnosis (CMD), Xi'an, China, 25-28 September 2016; pp. 324-327.
-
(2016)
Proceedings of the 2016 International Conference on Condition Monitoring and Diagnosis (CMD)
, pp. 324-327
-
-
Li, G.1
Rong, M.2
Wang, X.3
Li, X.4
Li, Y.5
-
24
-
-
85055077813
-
Partial Discharge Recognition with a Multi-Resolution Convolutional Neural Network
-
[CrossRef] [PubMed]
-
Li, G.; Wang, X.; Li, X.; Yang, A.; Rong, M. Partial Discharge Recognition with a Multi-Resolution Convolutional Neural Network. Sensors 2018, 18, 3512. [CrossRef] [PubMed]
-
(2018)
Sensors
, vol.18
, pp. 3512
-
-
Li, G.1
Wang, X.2
Li, X.3
Yang, A.4
Rong, M.5
-
25
-
-
85044073992
-
A deep learning framework using convolution neural network for classification of impulse fault patterns in transformers with increased accuracy
-
[CrossRef]
-
Dey, D.; Chatterjee, B.; Dalai, S.; Munshi, S.; Chakravorti, S. A deep learning framework using convolution neural network for classification of impulse fault patterns in transformers with increased accuracy. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3894-3897. [CrossRef]
-
(2017)
IEEE Trans. Dielectr. Electr. Insul.
, vol.24
, pp. 3894-3897
-
-
Dey, D.1
Chatterjee, B.2
Dalai, S.3
Munshi, S.4
Chakravorti, S.5
-
26
-
-
85059092490
-
Partial discharge source classification for switchgears with transient earth voltage sensor using convolutional neural network
-
Perth, WA, Australia, 23-26 September
-
Banno, K.; Nakamura, Y.; Fujii, Y.; Takano, T. Partial Discharge Source Classification for Switchgears with Transient Earth Voltage Sensor Using Convolutional Neural Network. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, WA, Australia, 23-26 September 2018; pp. 1-5.
-
(2018)
Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD)
, pp. 1-5
-
-
Banno, K.1
Nakamura, Y.2
Fujii, Y.3
Takano, T.4
-
27
-
-
85059096365
-
Pattern recognition of partial discharge image based on one-dimensional convolutional neural network
-
Perth, WA, Australia, 23-26 September
-
Wan, X.; Song, H.; Luo, L.; Li, Z.; Sheng, G.; Jiang, X. Pattern Recognition of Partial Discharge Image Based on One-dimensional Convolutional Neural Network. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, WA, Australia, 23-26 September 2018; pp. 1-4.
-
(2018)
Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD)
, pp. 1-4
-
-
Wan, X.1
Song, H.2
Luo, L.3
Li, Z.4
Sheng, G.5
Jiang, X.6
-
28
-
-
85046089584
-
GIS partial discharge pattern recognition via deep convolutional neural network under complex data source
-
[CrossRef]
-
Song, H.; Dai, J.; Sheng, G.; Jiang, X. GIS partial discharge pattern recognition via deep convolutional neural network under complex data source. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 678-685. [CrossRef]
-
(2018)
IEEE Trans. Dielectr. Electr. Insul.
, vol.25
, pp. 678-685
-
-
Song, H.1
Dai, J.2
Sheng, G.3
Jiang, X.4
-
29
-
-
85059100759
-
Fault identification based on pd ultrasonic signal using RNN, DNN and CNN
-
Perth,WA, Australia, 23-26 September
-
Zhang, Q.; Lin, J.; Song, H.; Sheng, G. Fault Identification Based on PD Ultrasonic Signal Using RNN, DNN and CNN. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth,WA, Australia, 23-26 September 2018; pp. 1-6.
-
(2018)
Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD)
, pp. 1-6
-
-
Zhang, Q.1
Lin, J.2
Song, H.3
Sheng, G.4
-
30
-
-
85059076692
-
Partial discharge pattern recognition with data augmentation based on generative adversarial networks
-
Perth, WA, Australia, 23-26 September
-
Wang, X.; Huang, H.; Hu, Y.; Yang, Y. Partial Discharge Pattern Recognition with Data Augmentation based on Generative Adversarial Networks. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, WA, Australia, 23-26 September 2018; pp. 1-4.
-
(2018)
Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD)
, pp. 1-4
-
-
Wang, X.1
Huang, H.2
Hu, Y.3
Yang, Y.4
-
31
-
-
85061749647
-
Partial discharge data augmentation of high voltage cables based on the variable noise superposition and generative adversarial network
-
Guangzhou, China, 6-8 November
-
Wu, Y.; Lu, C.;Wang, G.; Peng, X.; Liu, T.; Zhao, Y. Partial Discharge Data Augmentation of High Voltage Cables based on the Variable Noise Superposition and Generative Adversarial Network. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6-8 November 2018; pp. 3855-3859.
-
(2018)
Proceedings of the 2018 International Conference on Power System Technology (POWERCON)
, pp. 3855-3859
-
-
Wu, Y.1
Lu, C.2
Wang, G.3
Peng, X.4
Liu, T.5
Zhao, Y.6
-
32
-
-
85015804043
-
Application of the local polynomial Fourier transform in the evaluation of electrical signals generated by partial discharges in distribution transformers
-
[CrossRef]
-
Rojas, H.E.; Forero, M.C.; Cortes, C.A. Application of the local polynomial Fourier transform in the evaluation of electrical signals generated by partial discharges in distribution transformers. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 227-236. [CrossRef]
-
(2017)
IEEE Trans. Dielectr. Electr. Insul.
, vol.24
, pp. 227-236
-
-
Rojas, H.E.1
Forero, M.C.2
Cortes, C.A.3
-
33
-
-
85045329590
-
Deep scalogram representations for acoustic scene classification
-
[CrossRef]
-
Ren, Z.; Qian, K.; Wang, Y.; Zhang, Z.; Pandit, V.; Baird, A.; Schuller, B. Deep Scalogram Representations for Acoustic Scene Classification. IEEE/CAA J. Autom. Sin. 2018, 5, 662-669. [CrossRef]
-
(2018)
IEEE/CAA J. Autom. Sin.
, vol.5
, pp. 662-669
-
-
Ren, Z.1
Qian, K.2
Wang, Y.3
Zhang, Z.4
Pandit, V.5
Baird, A.6
Schuller, B.7
|