메뉴 건너뛰기




Volumn 118, Issue , 2020, Pages

Construction of decision tree based on C4.5 algorithm for online voltage stability assessment

Author keywords

Data mining; Decision tree; Modal analysis; Voltage stability

Indexed keywords

DATA MINING; DECISION TREES; MODAL ANALYSIS; SYSTEM STABILITY; VOLTAGE CONTROL;

EID: 85076857452     PISSN: 01420615     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijepes.2019.105793     Document Type: Article
Times cited : (62)

References (34)
  • 1
    • 84892238099 scopus 로고    scopus 로고
    • Voltage stability of electric power systems
    • Springer International p. 32
    • Cutsem, T.V., Vournas, C., Voltage stability of electric power systems. 2007, Springer International p. 32.
    • (2007)
    • Cutsem, T.V.1    Vournas, C.2
  • 2
    • 0003393654 scopus 로고
    • Power system stability and control
    • McGraw-Hill New York
    • Kundur, P., Power system stability and control. 1994, McGraw-Hill, New York.
    • (1994)
    • Kundur, P.1
  • 3
    • 0003824510 scopus 로고
    • Power system voltage stability
    • McGraw-Hill New York
    • Taylor, C.W., Power system voltage stability. 1994, McGraw-Hill, New York.
    • (1994)
    • Taylor, C.W.1
  • 4
    • 0026754899 scopus 로고
    • The continuation power flow: a tool for steady state voltage stability analysis. In: Power Industry Computer Application Conference Conference Proceedings; 1991
    • Ajjarapu V, Christy C. The continuation power flow: a tool for steady state voltage stability analysis. In: Power Industry Computer Application Conference, 1991. Conference Proceedings; 1992. p. 304–11.
    • (1992) , pp. 304-11
    • Ajjarapu, V.1    Christy, C.2
  • 6
    • 0033327922 scopus 로고    scopus 로고
    • Rule extraction for voltage security margin estimation
    • Su, M.C., Liu, C.W., Chang, C.S., Rule extraction for voltage security margin estimation. IEEE Trans Ind Electron 46 (1999), 1114–1122.
    • (1999) IEEE Trans Ind Electron , vol.46 , pp. 1114-1122
    • Su, M.C.1    Liu, C.W.2    Chang, C.S.3
  • 7
    • 0031234529 scopus 로고    scopus 로고
    • Machine learning approaches to power system security assessment
    • Wehenkel, L., Machine learning approaches to power system security assessment. IEEE Expert 12 (2002), 60–72.
    • (2002) IEEE Expert , vol.12 , pp. 60-72
    • Wehenkel, L.1
  • 8
    • 51549085470 scopus 로고    scopus 로고
    • A hybrid method of optimal data mining and artificial neural network for voltage stability assessment. In: Power Tech, 2005 IEEE Russia
    • Mori H, Komatsu Y. A hybrid method of optimal data mining and artificial neural network for voltage stability assessment. In: Power Tech, 2005 IEEE Russia; 2005. p. 1–7.
    • (2005) , pp. 1-7
    • Mori, H.1    Komatsu, Y.2
  • 9
    • 35348925933 scopus 로고    scopus 로고
    • Novel algorithm for online voltage stability assessment based on feed forward neural network. In: Power Engineering Society General Meeting pp.
    • Kamalasadan S, Srivastava AK, Thukaram D. Novel algorithm for online voltage stability assessment based on feed forward neural network. In: Power Engineering Society General Meeting; 2006. p. 7 pp.
    • (2006) , pp. 7
    • Kamalasadan, S.1    Srivastava, A.K.2    Thukaram, D.3
  • 10
    • 50249111067 scopus 로고    scopus 로고
    • A novel ANN based method for online voltage stability assessment. In: International Conference on Intelligent Systems Applications To Power Systems
    • Suthar B, Balasubramanian R. A novel ANN based method for online voltage stability assessment. In: International Conference on Intelligent Systems Applications To Power Systems; 2007. p. 1–6.
    • (2007) , pp. 1-6
    • Suthar, B.1    Balasubramanian, R.2
  • 11
    • 84860680277 scopus 로고    scopus 로고
    • A real time PMU data and neural network approach to analyze voltage stability. In: International Conference on Advanced Power System Automation and Protection p.
    • Innah H, Hiyama T. A real time PMU data and neural network approach to analyze voltage stability. In: International Conference on Advanced Power System Automation and Protection; 2012. p. 1263–67.
    • (2012) , pp. 1263-67
    • Innah, H.1    Hiyama, T.2
  • 12
    • 84937113937 scopus 로고    scopus 로고
    • Genetic algorithm based artificial neural network model for voltage stability monitoring. In: Eighteenth National Power Systems Conference
    • Sajan KS, Tyagi B, Kumar V. Genetic algorithm based artificial neural network model for voltage stability monitoring. In: Eighteenth National Power Systems Conference; 2015. p. 1–5.
    • (2015) , pp. 1-5
    • Sajan, K.S.1    Tyagi, B.2    Kumar, V.3
  • 13
    • 84939512395 scopus 로고    scopus 로고
    • On-line power systems voltage stability monitoring using artificial neural networks. In: International Symposium on Advanced Topics in Electrical Engineering p.
    • Bulac C, Triştiu I, Mandiş A, Toma L. On-line power systems voltage stability monitoring using artificial neural networks. In: International Symposium on Advanced Topics in Electrical Engineering; 2015. p. 622–25.
    • (2015) , pp. 622-25
    • Bulac, C.1    Triştiu, I.2    Mandiş, A.3    Toma, L.4
  • 14
    • 84893864992 scopus 로고    scopus 로고
    • Power system voltage stability monitoring using artificial neural networks with a reduced set of inputs
    • Bahmanyar, A.R., Karami, A., Power system voltage stability monitoring using artificial neural networks with a reduced set of inputs. Int J Electr Power Energy Syst 58 (2014), 246–256.
    • (2014) Int J Electr Power Energy Syst , vol.58 , pp. 246-256
    • Bahmanyar, A.R.1    Karami, A.2
  • 15
    • 84998814318 scopus 로고    scopus 로고
    • Voltage stability monitoring of power systems using reduced network and artificial neural network
    • Ashraf, S.M., Gupta, A., Choudhary, D.K., Chakrabarti, S., Voltage stability monitoring of power systems using reduced network and artificial neural network. Int J Electr Power Energy Syst 87 (2017), 43–51.
    • (2017) Int J Electr Power Energy Syst , vol.87 , pp. 43-51
    • Ashraf, S.M.1    Gupta, A.2    Choudhary, D.K.3    Chakrabarti, S.4
  • 16
    • 84962132510 scopus 로고    scopus 로고
    • ICA based artificial neural network model for voltage stability monitoring. In: TENCON 2015 - 2015 IEEE Region 10 Conference
    • Sajan KS, Kumar V, Tyagi B. ICA based artificial neural network model for voltage stability monitoring. In: TENCON 2015 - 2015 IEEE Region 10 Conference; 2016. p. 1–3.
    • (2016) , pp. 1-3
    • Sajan, K.S.1    Kumar, V.2    Tyagi, B.3
  • 17
  • 18
    • 77954834866 scopus 로고    scopus 로고
    • Online monitoring of voltage stability margin using an artificial neural network
    • Zhou, D.Q., Annakkage, U.D., Rajapakse, A.D., Online monitoring of voltage stability margin using an artificial neural network. IEEE Trans Power Syst 25 (2010), 1566–1574.
    • (2010) IEEE Trans Power Syst , vol.25 , pp. 1566-1574
    • Zhou, D.Q.1    Annakkage, U.D.2    Rajapakse, A.D.3
  • 19
    • 84929620516 scopus 로고    scopus 로고
    • Genetic algorithm based support vector machine for on-line voltage stability monitoring
    • Sajan, K.S., Kumar, V., Tyagi, B., Genetic algorithm based support vector machine for on-line voltage stability monitoring. Int J Electr Power Energy Syst 73 (2015), 200–208.
    • (2015) Int J Electr Power Energy Syst , vol.73 , pp. 200-208
    • Sajan, K.S.1    Kumar, V.2    Tyagi, B.3
  • 20
    • 84990303629 scopus 로고    scopus 로고
    • Frank E: data mining: practical machine learning tools and techniques, 2nd ed. Biomedical Engineering Online
    • Azuaje F. Witten IH, Frank E: data mining: practical machine learning tools and techniques, 2nd ed. Biomedical Engineering Online, vol. 5; 2006. p. 51.
    • (2006) , vol.5 , pp. 51
    • Azuaje, F.1    Witten, IH.2
  • 21
    • 85076855719 scopus 로고    scopus 로고
    • Zaki, Mohammed J. Data mining and analysis: foundations and algorithms. Cambridge University Press;.
    • Zaki, Mohammed J. Data mining and analysis: foundations and algorithms. Cambridge University Press; 2014.
    • (2014)
  • 22
    • 36348946449 scopus 로고    scopus 로고
    • An online dynamic security assessment scheme using phasor measurements and decision trees
    • Sun, K., Likhate, S., Vittal, V., Kolluri, V.S., Mandal, S., An online dynamic security assessment scheme using phasor measurements and decision trees. IEEE Trans Power Syst 22 (2008), 1935–1943.
    • (2008) IEEE Trans Power Syst , vol.22 , pp. 1935-1943
    • Sun, K.1    Likhate, S.2    Vittal, V.3    Kolluri, V.S.4    Mandal, S.5
  • 24
    • 84951325456 scopus 로고    scopus 로고
    • A random forest-based approach for voltage security monitoring in a power system. In: PowerTech, 2015 IEEE Eindhoven
    • Negnevitsky M, Tomin N, Kurbatsky V, Panasetsky D, Zhukov A, Rehtanz C. A random forest-based approach for voltage security monitoring in a power system. In: PowerTech, 2015 IEEE Eindhoven; 2015. p. 1–6.
    • (2015) , pp. 1-6
    • Negnevitsky, M.1    Tomin, N.2    Kurbatsky, V.3    Panasetsky, D.4    Zhukov, A.5    Rehtanz, C.6
  • 25
    • 0037901701 scopus 로고    scopus 로고
    • Classification and Regression Trees
    • John Wiley & Sons Ltd
    • Everitt, B.S., Classification and Regression Trees. 2005, John Wiley & Sons Ltd.
    • (2005)
    • Everitt, B.S.1
  • 27
    • 85076850845 scopus 로고    scopus 로고
    • Data mining: concepts and techniques. Data Mining Concepts Models Methods & Algorithms Second Edition
    • Han J, Kamber M. Data mining: concepts and techniques. Data Mining Concepts Models Methods & Algorithms Second Edition, vol. 5; 2011. p. 1–18.
    • (2011) , vol.5 , pp. 1-18
    • Han, J.1    Kamber, M.2
  • 28
    • 0026953350 scopus 로고
    • Voltage stability evaluation using modal analysis
    • Gao, B., Morison, G.K., Kundur, P., Voltage stability evaluation using modal analysis. Power Syst IEEE Trans 7 (1992), 1529–1542.
    • (1992) Power Syst IEEE Trans , vol.7 , pp. 1529-1542
    • Gao, B.1    Morison, G.K.2    Kundur, P.3
  • 29
    • 85076831733 scopus 로고    scopus 로고
    • Feature selection for classification: A review. Documentación Administrativa
    • Tang J, Alelyani S, Liu H. Feature selection for classification: A review. Documentación Administrativa; 2014. p. 313–334.
    • (2014) , pp. 313-334
    • Tang, J.1    Alelyani, S.2    Liu, H.3
  • 30
    • 54549099006 scopus 로고    scopus 로고
    • Performance of feature-selection methods in the classification of high-dimension data
    • Hua, J., Tembe, W.D., Dougherty, E.R., Performance of feature-selection methods in the classification of high-dimension data. Pattern Recogn 42 (2009), 409–424.
    • (2009) Pattern Recogn , vol.42 , pp. 409-424
    • Hua, J.1    Tembe, W.D.2    Dougherty, E.R.3
  • 31
    • 34247622378 scopus 로고    scopus 로고
    • Iterative RELIEF for feature weighting: algorithms, theories, and applications
    • Sun, Y., Iterative RELIEF for feature weighting: algorithms, theories, and applications. IEEE Trans Pattern Anal Mach Intell 29 (2007), 1035–1051.
    • (2007) IEEE Trans Pattern Anal Mach Intell , vol.29 , pp. 1035-1051
    • Sun, Y.1
  • 32
    • 85076863859 scopus 로고    scopus 로고
    • Introduction to Data Mining, 1st ed. Addison-Wesley Longman Publishing Co., Inc.;.
    • Tan PN, Steinbach M, Kumar V. Introduction to Data Mining, 1st ed. Addison-Wesley Longman Publishing Co., Inc.; 2005.
    • (2005)
    • Tan, P.N.1    Steinbach, M.2    Kumar, V.3
  • 33
    • 0003500248 scopus 로고
    • C4.5: programs for machine learning
    • Morgan Kaufmann Publishers Inc.
    • Quinlan, J.R., C4.5: programs for machine learning. 1992, Morgan Kaufmann Publishers Inc.
    • (1992)
    • Quinlan, J.R.1
  • 34
    • 85010288286 scopus 로고    scopus 로고
    • Comparative Analysis of Decision Tree Algorithms: ID3, C4.5 and Random Forest
    • Springer India
    • Sathyadevan, S., Nair, R.R., Comparative Analysis of Decision Tree Algorithms: ID3, C4.5 and Random Forest. 2015, Springer, India.
    • (2015)
    • Sathyadevan, S.1    Nair, R.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.