메뉴 건너뛰기




Volumn 48, Issue 12, 2018, Pages 4577-4593

Supervised methods for regrouping attributes in fuzzy rule-based classification systems

Author keywords

Ensemble learning methods; Frequent itemsets mining; Fuzzy rules; Supervised attributes regrouping; Supervised learning

Indexed keywords

FUZZY INFERENCE; FUZZY RULES; SUPERVISED LEARNING;

EID: 85049592549     PISSN: 0924669X     EISSN: 15737497     Source Type: Journal    
DOI: 10.1007/s10489-018-1224-0     Document Type: Article
Times cited : (6)

References (73)
  • 1
    • 0002197262 scopus 로고
    • Distributed representation of fuzzy rules and its application to pattern classification
    • Ishibuchi H, Nozaki K, Tanaka H (1992) Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Set Syst 52:21–32
    • (1992) Fuzzy Set Syst , vol.52 , pp. 21-32
    • Ishibuchi, H.1    Nozaki, K.2    Tanaka, H.3
  • 2
    • 0032655554 scopus 로고    scopus 로고
    • A proposal on reasoning methods in fuzzy rule-based classification systems
    • Cordon O, Del Jesus MJ, Herrera F (1999) A proposal on reasoning methods in fuzzy rule-based classification systems. Int J Approx Reason 20:21–45
    • (1999) Int J Approx Reason , vol.20 , pp. 21-45
    • Cordon, O.1    Del Jesus, M.J.2    Herrera, F.3
  • 3
    • 44049096608 scopus 로고    scopus 로고
    • Efficient fuzzy rule generation: a new approach using data mining principles and rule weighting
    • Dehzangi O, Zolghadri MJ, Taheri S, Fakhrahmad SM (2007) Efficient fuzzy rule generation: a new approach using data mining principles and rule weighting. Fuzzy Syst Knowl Discovery 2:134–139
    • (2007) Fuzzy Syst Knowl Discovery , vol.2 , pp. 134-139
    • Dehzangi, O.1    Zolghadri, M.J.2    Taheri, S.3    Fakhrahmad, S.M.4
  • 4
    • 84961962670 scopus 로고    scopus 로고
    • Fuzzy rule-based classification systems for multi-class problems using binary decomposition strategies: on the influence of n-dimensional overlap functions in the fuzzy reasoning method
    • Elkano M, Galar M, Sanz J, Bustince H (2016) Fuzzy rule-based classification systems for multi-class problems using binary decomposition strategies: on the influence of n-dimensional overlap functions in the fuzzy reasoning method. Inf Sci 332:94–114
    • (2016) Inf Sci , vol.332 , pp. 94-114
    • Elkano, M.1    Galar, M.2    Sanz, J.3    Bustince, H.4
  • 6
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh LA (1965) Fuzzy sets. Inform Control 8(3):338–353
    • (1965) Inform Control , vol.8 , Issue.3 , pp. 338-353
    • Zadeh, L.A.1
  • 8
    • 84864690491 scopus 로고    scopus 로고
    • An integrated mechanism for feature selection and fuzzy rule extraction for classification
    • Chen YC, Pal NR, Chung IF (2012) An integrated mechanism for feature selection and fuzzy rule extraction for classification. IEEE Trans Fuzzy Syst 20(4):683–698
    • (2012) IEEE Trans Fuzzy Syst , vol.20 , Issue.4 , pp. 683-698
    • Chen, Y.C.1    Pal, N.R.2    Chung, I.F.3
  • 10
    • 85056075070 scopus 로고    scopus 로고
    • An application of feature selection for the fuzzy rule-based classifier design based on an enlarger hedge algebras for high-dimensional datasets
    • Phong PD (2015) An application of feature selection for the fuzzy rule-based classifier design based on an enlarger hedge algebras for high-dimensional datasets. J Sci Technol 53(5):583– 597
    • (2015) J Sci Technol , vol.53 , Issue.5 , pp. 583-597
    • Phong, P.D.1
  • 11
    • 58049200709 scopus 로고    scopus 로고
    • Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems
    • Gacto MJ, Alcala R, Herrera F (2009) Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems. Soft Comput 13:419–436
    • (2009) Soft Comput , vol.13 , pp. 419-436
    • Gacto, M.J.1    Alcala, R.2    Herrera, F.3
  • 12
    • 35348831258 scopus 로고    scopus 로고
    • A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems
    • Alcala R, Gacto MJ, Herrera F, Alcal-fdez J (2007) A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems. Int J Uncertainty, Fuzz Knowl-Based Syst 15:539–557
    • (2007) Int J Uncertainty, Fuzz Knowl-Based Syst , vol.15 , pp. 539-557
    • Alcala, R.1    Gacto, M.J.2    Herrera, F.3    Alcal-fdez, J.4
  • 13
    • 0346781550 scopus 로고    scopus 로고
    • Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
    • Ishibuchi H, Yamamoto T (2004) Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets Syst 141:59–88
    • (2004) Fuzzy Sets Syst , vol.141 , pp. 59-88
    • Ishibuchi, H.1    Yamamoto, T.2
  • 14
    • 84906093543 scopus 로고    scopus 로고
    • A fast and efficient multi-objective evolutionary learning scheme for fuzzy rule-based classifiers
    • Antonelli M, Ducange P, Marcelloni F (2014) A fast and efficient multi-objective evolutionary learning scheme for fuzzy rule-based classifiers. Inf Sci 283:36–54
    • (2014) Inf Sci , vol.283 , pp. 36-54
    • Antonelli, M.1    Ducange, P.2    Marcelloni, F.3
  • 15
    • 84907331076 scopus 로고    scopus 로고
    • A multi-objective evolutionary method for learning granularities based on fuzzy discretization to improve the accuracy-complexity trade-off of fuzzy rule-based classification systems: d-MOFARC algorithm
    • Fazzolari M, Alcala R, Herrera F (2014) A multi-objective evolutionary method for learning granularities based on fuzzy discretization to improve the accuracy-complexity trade-off of fuzzy rule-based classification systems: d-MOFARC algorithm. Appl Soft Comput 24:470–481
    • (2014) Appl Soft Comput , vol.24 , pp. 470-481
    • Fazzolari, M.1    Alcala, R.2    Herrera, F.3
  • 16
    • 84944790408 scopus 로고    scopus 로고
    • A multi-objective genetic optimization of interpretability-oriented fuzzy rule-based classifiers
    • Rudzinski F (2016) A multi-objective genetic optimization of interpretability-oriented fuzzy rule-based classifiers. Appl Soft Comput 38:118–133
    • (2016) Appl Soft Comput , vol.38 , pp. 118-133
    • Rudzinski, F.1
  • 17
    • 84880080951 scopus 로고    scopus 로고
    • Two methods of linear correlation search for a knowledge based supervised classification
    • Springer Berlin Heidelberg, Berlin, Heidelberg
    • Borgi A, Bazin JM, Akdag H (1998) Two methods of linear correlation search for a knowledge based supervised classification. In: 11th international conference on industrial and engineering applications of artificial intelligence and expert systems, IEA/AIE-98, Benicassim, Espagne, juin 1998. Lecture Notes in Computer Science, vol 1415/1998. Springer, Berlin, pp 696–707
    • (1998) Lecture Notes in Computer Science , pp. 696-707
    • Borgi, A.1    Bazin, J.-M.2    Akdag, H.3
  • 18
    • 84880057779 scopus 로고    scopus 로고
    • An ensemble method for fuzzy rule-based classification systems
    • Soua B, Borgi A, Tagina M (2013) An ensemble method for fuzzy rule-based classification systems. Knowl Inf Syst 36:385–410
    • (2013) Knowl Inf Syst , vol.36 , pp. 385-410
    • Soua, B.1    Borgi, A.2    Tagina, M.3
  • 20
    • 0028482107 scopus 로고
    • Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms
    • Ishibuchi H, Nozaki K, Yamamoto N, Tanaka H (1994) Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms. Fuzzy Set Syst 65:237–253
    • (1994) Fuzzy Set Syst , vol.65 , pp. 237-253
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 21
    • 0027702852 scopus 로고
    • Efficient fuzzy partition of pattern space for classification problems
    • Ishibuchi H, Nozaki K, Tanaka H (1993) Efficient fuzzy partition of pattern space for classification problems. Fuzzy Set Syst 59:295–304
    • (1993) Fuzzy Set Syst , vol.59 , pp. 295-304
    • Ishibuchi, H.1    Nozaki, K.2    Tanaka, H.3
  • 24
    • 84857153200 scopus 로고    scopus 로고
    • Effective method for extracting rules from fuzzy decision trees based on ambiguity and classifiability
    • Hefny HA, Ghiduk AS, Wahab AA, Elashiry M (2010) Effective method for extracting rules from fuzzy decision trees based on ambiguity and classifiability. Universal J Comput Sci Eng Technol 1(1):55–63
    • (2010) Universal J Comput Sci Eng Technol , vol.1 , Issue.1 , pp. 55-63
    • Hefny, H.A.1    Ghiduk, A.S.2    Wahab, A.A.3    Elashiry, M.4
  • 25
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: survey in soft computing framework
    • Mitra S, Hayashi Y (2000) Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Trans Neural Netw 11(3):748–768
    • (2000) IEEE Trans Neural Netw , vol.11 , Issue.3 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 26
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang J-SR (1993) ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23 (3):665–685
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.R.1
  • 28
    • 85041965693 scopus 로고    scopus 로고
    • Induction of accurate and interpretable fuzzy rules from preliminary crisp representation
    • Chen T, Shang C, Su P, Shen Q (2018) Induction of accurate and interpretable fuzzy rules from preliminary crisp representation. Knowl-Based Syst 146:152–166
    • (2018) Knowl-Based Syst , vol.146 , pp. 152-166
    • Chen, T.1    Shang, C.2    Su, P.3    Shen, Q.4
  • 29
    • 85017150802 scopus 로고    scopus 로고
    • Designing rule-based fuzzy systems for classification in medicine
    • Pota M, Esposito M, De Pietro G (2017) Designing rule-based fuzzy systems for classification in medicine. Knowl-Based Syst 124:105–132
    • (2017) Knowl-Based Syst , vol.124 , pp. 105-132
    • Pota, M.1    Esposito, M.2    De Pietro, G.3
  • 30
    • 0000719509 scopus 로고    scopus 로고
    • Voting in fuzzy rule-based systems for pattern classification problems
    • Ishibuchi H, Nakashima T, Morisawa T (1999) Voting in fuzzy rule-based systems for pattern classification problems. Fuzzy Sets Syst 103(2):223–238
    • (1999) Fuzzy Sets Syst , vol.103 , Issue.2 , pp. 223-238
    • Ishibuchi, H.1    Nakashima, T.2    Morisawa, T.3
  • 31
    • 17444427096 scopus 로고    scopus 로고
    • Hybridization of fuzzy GBML approaches for pattern classification problems
    • Ishibuchi H, Yamamoto T, Nakashima T (2005) Hybridization of fuzzy GBML approaches for pattern classification problems. IEEE Trans Syst Man Cybern Part B 35(2):359–365
    • (2005) IEEE Trans Syst Man Cybern Part B , vol.35 , Issue.2 , pp. 359-365
    • Ishibuchi, H.1    Yamamoto, T.2    Nakashima, T.3
  • 32
    • 3543091439 scopus 로고    scopus 로고
    • Comparison of heuristic criteria for fuzzy rule selection in classification problems
    • Ishibuchi H, Yamamoto T (2004) Comparison of heuristic criteria for fuzzy rule selection in classification problems. Fuzzy Optim Decis Making 3:119–139
    • (2004) Fuzzy Optim Decis Making , vol.3 , pp. 119-139
    • Ishibuchi, H.1    Yamamoto, T.2
  • 33
    • 50549085684 scopus 로고    scopus 로고
    • SGERD: A steady-state genetic algorithm for extracting fuzzy classification rules from data
    • Mansoori EG, Zolghadri MJ, Katebi SD (2008) SGERD: A steady-state genetic algorithm for extracting fuzzy classification rules from data. IEEE Trans Fuzzy Syst 16(4):1061–1071
    • (2008) IEEE Trans Fuzzy Syst , vol.16 , Issue.4 , pp. 1061-1071
    • Mansoori, E.G.1    Zolghadri, M.J.2    Katebi, S.D.3
  • 34
    • 85013985333 scopus 로고    scopus 로고
    • On fuzzy feature selection in designing fuzzy classifiers for high-dimensional data
    • Mansoori EG, Shafiee KS (2016) On fuzzy feature selection in designing fuzzy classifiers for high-dimensional data. Evolv Syst 7(4):255–265
    • (2016) Evolv Syst , vol.7 , Issue.4 , pp. 255-265
    • Mansoori, E.G.1    Shafiee, K.S.2
  • 35
    • 0037230859 scopus 로고    scopus 로고
    • Finding fuzzy classification rules using data mining techniques
    • Hu YC, Chen RS, Tzeng GH (2003) Finding fuzzy classification rules using data mining techniques. Pattern Recogn Lett 24(1):509–519
    • (2003) Pattern Recogn Lett , vol.24 , Issue.1 , pp. 509-519
    • Hu, Y.C.1    Chen, R.S.2    Tzeng, G.H.3
  • 36
    • 85024184452 scopus 로고    scopus 로고
    • Building an associative classifier based on fuzzy association rules
    • Chen Z, Chen G (2008) Building an associative classifier based on fuzzy association rules. Int J Comput Intel Syst 1(3):262–273
    • (2008) Int J Comput Intel Syst , vol.1 , Issue.3 , pp. 262-273
    • Chen, Z.1    Chen, G.2
  • 37
    • 80053653987 scopus 로고    scopus 로고
    • A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning
    • Alcala-Fdez J, Alcala R, Herrera F (2011) A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning. IEEE Trans Fuzzy Syst 19(5):857–872
    • (2011) IEEE Trans Fuzzy Syst , vol.19 , Issue.5 , pp. 857-872
    • Alcala-Fdez, J.1    Alcala, R.2    Herrera, F.3
  • 38
    • 26844469668 scopus 로고    scopus 로고
    • Rule weight specification in fuzzy rule-based classification systems
    • Ishibuchi H, Yamamoto T (2005) Rule weight specification in fuzzy rule-based classification systems. IEEE Trans Fuzzy Syst 13(4):428–435
    • (2005) IEEE Trans Fuzzy Syst , vol.13 , Issue.4 , pp. 428-435
    • Ishibuchi, H.1    Yamamoto, T.2
  • 39
    • 84962026438 scopus 로고    scopus 로고
    • Ensemble classification and regression-recent developments, applications and future directions
    • Ren Y, Zhang L, Suganthan PN (2016) Ensemble classification and regression-recent developments, applications and future directions. IEEE Comput Intell Mag 11(1):41–53
    • (2016) IEEE Comput Intell Mag , vol.11 , Issue.1 , pp. 41-53
    • Ren, Y.1    Zhang, L.2    Suganthan, P.N.3
  • 40
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 41
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund Y (1995) Boosting a weak learning algorithm by majority. Inf Comput 121:256–285
    • (1995) Inf Comput , vol.121 , pp. 256-285
    • Freund, Y.1
  • 43
    • 50149111947 scopus 로고    scopus 로고
    • A first study on bagging fuzzy rule-based classiffication systems with multicriteria genetic selection of the component classiffiers
    • Witten-Bommerholz, Germany
    • Cordon O, Quirin A, Sanchez L (2008) A first study on bagging fuzzy rule-based classiffication systems with multicriteria genetic selection of the component classiffiers. In: 3rd international workshop on genetic and evolving fuzzy systems. Witten-Bommerholz, Germany
    • (2008) 3Rd International Workshop on Genetic and Evolving Fuzzy Systems
    • Cordon, O.1    Quirin, A.2    Sanchez, L.3
  • 44
    • 0036080160 scopus 로고    scopus 로고
    • Bagging, boosting and the random subspace method for linear classifiers
    • Skurichina M, Duin R (2002) Bagging, boosting and the random subspace method for linear classifiers. Pattern Anal Applic 5:121–135
    • (2002) Pattern Anal Applic , vol.5 , pp. 121-135
    • Skurichina, M.1    Duin, R.2
  • 45
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20:832– 844
    • (1998) IEEE Trans Pattern Anal Mach Intell , vol.20 , pp. 832-844
    • Ho, T.1
  • 47
  • 51
    • 85056046599 scopus 로고    scopus 로고
    • Comparative study of frequent itemset mining algorithms: FP growth, FIN, prepost + and study of efficiency in terms of memory consumption, scalability and runtime
    • Bharati K, Kanchan D (2016) Comparative study of frequent itemset mining algorithms: FP growth, FIN, prepost + and study of efficiency in terms of memory consumption, scalability and runtime. Int J Tech Res Appl 4:72–77
    • (2016) Int J Tech Res Appl , vol.4 , pp. 72-77
    • Bharati, K.1    Kanchan, D.2
  • 52
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • Washington DC
    • Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: ACM SIGMOD conference. Washington DC, pp 207–216
    • (1993) ACM SIGMOD Conference , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 53
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules
    • Santiago, Chile
    • Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: 20th VLDB Conference, Santiago, Chile, pp 487–499
    • (1994) 20Th VLDB Conference , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 55
    • 84990949437 scopus 로고    scopus 로고
    • FHN: an efficient algorithm for mining high-utility itemsets with negative unit profits
    • Lin JCW, Fournier-Viger P, Gan W (2016) FHN: an efficient algorithm for mining high-utility itemsets with negative unit profits. Knowl-Based Syst 111:283–298
    • (2016) Knowl-Based Syst , vol.111 , pp. 283-298
    • Lin, J.C.W.1    Fournier-Viger, P.2    Gan, W.3
  • 56
    • 85015919957 scopus 로고    scopus 로고
    • An efficient algorithm for mining high utility patterns from incremental databases with one database scan
    • Yun U, Ryang H, Lee G, Fujita H (2017) An efficient algorithm for mining high utility patterns from incremental databases with one database scan. Knowl-Based Syst 124:188–206
    • (2017) Knowl-Based Syst , vol.124 , pp. 188-206
    • Yun, U.1    Ryang, H.2    Lee, G.3    Fujita, H.4
  • 57
    • 85039860850 scopus 로고    scopus 로고
    • Damped window based high average utility pattern mining over data streams
    • Yun U, Kim D, Yoon E, Fujita H (2018) Damped window based high average utility pattern mining over data streams. Knowl-Based Syst 144:188–205
    • (2018) Knowl-Based Syst , vol.144 , pp. 188-205
    • Yun, U.1    Kim, D.2    Yoon, E.3    Fujita, H.4
  • 59
    • 27644510774 scopus 로고    scopus 로고
    • Fast algorithms for frequent itemset mining using fp-trees
    • Grahne G, Zhu J (2005) Fast algorithms for frequent itemset mining using fp-trees. IEEE Trans Knowl Data Eng 17:1347– 1362
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , pp. 1347-1362
    • Grahne, G.1    Zhu, J.2
  • 61
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. ACM SIGMOD Record 29:1–12
    • (2000) ACM SIGMOD Record , vol.29 , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 62
    • 84865508170 scopus 로고    scopus 로고
    • A new algorithm for fast mining frequent itemsets using N-lists
    • Deng Z, Wang Z, Jiang J (2012) A new algorithm for fast mining frequent itemsets using N-lists. Sci China Inform Sci 55(9):2008–2030
    • (2012) Sci China Inform Sci , vol.55 , Issue.9 , pp. 2008-2030
    • Deng, Z.1    Wang, Z.2    Jiang, J.3
  • 63
    • 84896870613 scopus 로고    scopus 로고
    • Fast mining frequent itemsets using nodesets
    • Deng ZH, Lv SL (2014) Fast mining frequent itemsets using nodesets. Expert Syst Appl 41(10):4505–4512
    • (2014) Expert Syst Appl , vol.41 , Issue.10 , pp. 4505-4512
    • Deng, Z.H.1    Lv, S.L.2
  • 65
    • 84856043672 scopus 로고
    • A mathematical theory of communication, Part i, Part II
    • Shannon CE (1948) A mathematical theory of communication, Part i, Part II. Bell Syst Tech J 27:623–656
    • (1948) Bell Syst Tech J , vol.27 , pp. 623-656
    • Shannon, C.E.1
  • 67
    • 0002408684 scopus 로고
    • On measures of entropy and information
    • contributions to the theory of statistics. The Regents of the University of California
    • Renyi A (1961) On measures of entropy and information. In: Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, vol 1: contributions to the theory of statistics. The Regents of the University of California
    • (1961) Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability , vol.1
    • Renyi, A.1
  • 70
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous valued attributes for classification learning
    • Morgan Kaufmann, San Francisco, CA
    • Fayyad U, Irani K (1993) Multi-interval discretization of continuous valued attributes for classification learning. In: 13th international joint conference on artificial intelligence, Morgan Kaufmann. San Francisco, CA, pp 1022–1027
    • (1993) 13Th International Joint Conference on Artificial Intelligence , pp. 1022-1027
    • Fayyad, U.1    Irani, K.2
  • 71
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Morgan Kaufmann. Canada
    • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: 14th international joint conference on artificial intelligence, Morgan Kaufmann. Canada, pp 1137–1143
    • (1995) 14Th International Joint Conference on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 72
    • 0036684175 scopus 로고    scopus 로고
    • From approximative to descriptive fuzzy classifiers
    • Marn-Blzquez JG, Shen Q (2002) From approximative to descriptive fuzzy classifiers. IEEE Trans Fuzzy Syst 10(4):484–497
    • (2002) IEEE Trans Fuzzy Syst , vol.10 , Issue.4 , pp. 484-497
    • Marn-Blzquez, J.G.1    Shen, Q.2
  • 73
    • 70349591070 scopus 로고    scopus 로고
    • Furia: an algorithm for unordered fuzzy rule induction
    • Hhn J, Hllermeier E (2009) Furia: an algorithm for unordered fuzzy rule induction. Data Mining Knowl Discovery 19(3):293–319
    • (2009) Data Mining Knowl Discovery , vol.19 , Issue.3 , pp. 293-319
    • Hhn, J.1    Hllermeier, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.