메뉴 건너뛰기




Volumn 104, Issue 1-4, 2019, Pages 1541-1550

Hierarchical artificial neural network modelling of aluminum alloy properties used in die casting

Author keywords

Aluminum alloys; Back propagation; Hierarchical neural network; Semi parametric modelling

Indexed keywords

BACKPROPAGATION; DIE CASTING; METALS; NEURAL NETWORKS;

EID: 85068858871     PISSN: 02683768     EISSN: 14333015     Source Type: Journal    
DOI: 10.1007/s00170-019-04019-z     Document Type: Article
Times cited : (3)

References (26)
  • 1
    • 85071898600 scopus 로고    scopus 로고
    • Multi-objective design and optimization of hard magnetic alloys free of rare earths
    • Curran Associatives
    • Multi-objective design and optimization of hard magnetic alloys free of rare earths, Materials Science & Technology Conference and Exhibition 2015 (MS&T’15), vol 1. Curran Associatives (2015)
    • (2015) Materials Science & Technology Conference and Exhibition 2015 (MS&T’15) , vol.1
  • 2
    • 85020732172 scopus 로고    scopus 로고
    • Classification of wrought aluminum alloys by artificial neural networks evaluation of laser induced breakdown spectroscopy spectra from aluminum scrap samples
    • Campanella B, Grifoni E, Legnaioli S, Lorenzetti G, Pagnotta S, Sorrentino F, Palleschi V (2017) Classification of wrought aluminum alloys by artificial neural networks evaluation of laser induced breakdown spectroscopy spectra from aluminum scrap samples. Spectrochim Acta B At Spectrosc 134:52–57
    • (2017) Spectrochim Acta B At Spectrosc , vol.134 , pp. 52-57
    • Campanella, B.1    Grifoni, E.2    Legnaioli, S.3    Lorenzetti, G.4    Pagnotta, S.5    Sorrentino, F.6    Palleschi, V.7
  • 3
    • 84925485700 scopus 로고    scopus 로고
    • Artificial neural network to predict the effect of heat treatment, reinforcement size, and volume fraction on alcumg alloy matrix composite properties fabricated by stir casting method
    • Canakci A, Varol T, Ozsahin S (2015) Artificial neural network to predict the effect of heat treatment, reinforcement size, and volume fraction on alcumg alloy matrix composite properties fabricated by stir casting method. Int J Adv Manuf Technol 78(1–4):305–317
    • (2015) Int J Adv Manuf Technol , vol.78 , Issue.1-4 , pp. 305-317
    • Canakci, A.1    Varol, T.2    Ozsahin, S.3
  • 4
    • 84884973606 scopus 로고    scopus 로고
    • Hierarchical multi-label classification using local neural networks
    • Cerri R, Barros RC, de Carvalho AC (2014) Hierarchical multi-label classification using local neural networks. J Comput Syst Sci 80(1):39–56. 10.1016/j.jcss.2013.03.007. http://www.sciencedirect.com/science/article/pii/S0022000013000718
    • (2014) J Comput Syst Sci , vol.80 , Issue.1 , pp. 39-56
    • Cerri, R.1    Barros, R.C.2    de Carvalho, A.C.3
  • 5
    • 84891053406 scopus 로고    scopus 로고
    • Recent developments in advanced aircraft aluminium alloys
    • Dursun T, Soutis C (2014) Recent developments in advanced aircraft aluminium alloys. Mater Des (1980-2015) 56:862–871
    • (2014) Mater Des (1980-2015) , vol.56 , pp. 862-871
    • Dursun, T.1    Soutis, C.2
  • 6
    • 20444464409 scopus 로고    scopus 로고
    • Modelling the correlation between cutting and process parameters in high-speed machining of inconel 718 alloy using an artificial neural network
    • Ezugwu E, Fadare D, Bonney J, DaSilva R, Sales W (2005) Modelling the correlation between cutting and process parameters in high-speed machining of inconel 718 alloy using an artificial neural network. Int J Mach Tools Manuf 45:1375–1385
    • (2005) Int J Mach Tools Manuf , vol.45 , pp. 1375-1385
    • Ezugwu, E.1    Fadare, D.2    Bonney, J.3    DaSilva, R.4    Sales, W.5
  • 7
    • 84906568973 scopus 로고    scopus 로고
    • Recent development in aluminium for automotive applications
    • Hirsch J (2014) Recent development in aluminium for automotive applications. Trans Nonferrous Metals Soc Chin 24(7):1995–2002. 10.1016/S1003-6326(14)63305-7. http://www.sciencedirect.com/science/article/pii/S1003632614633057
    • (2014) Trans Nonferrous Metals Soc Chin , vol.24 , Issue.7 , pp. 1995-2002
    • Hirsch, J.1
  • 8
    • 84923357202 scopus 로고    scopus 로고
    • Optimization of surface roughness and cutting force during aa7039/al2o3 metal matrix composites milling using neural networks and taguchi method
    • Karabulut Ş (2015) Optimization of surface roughness and cutting force during aa7039/al2o3 metal matrix composites milling using neural networks and taguchi method. Measurement 66:139– 149
    • (2015) Measurement , vol.66 , pp. 139-149
    • Karabulut, Ş.1
  • 10
    • 0023084681 scopus 로고
    • A hierarchical neural-network model for control and learning of voluntary movement
    • Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57(3):169–185
    • (1987) Biol Cybern , vol.57 , Issue.3 , pp. 169-185
    • Kawato, M.1    Furukawa, K.2    Suzuki, R.3
  • 11
    • 84943292867 scopus 로고    scopus 로고
    • Advanced aluminium matrix composites: the critical need of automotive and aerospace engineering fields
    • https://doi.org/10.1016/j.matpr.2015.07.290 http://www.sciencedirect.com/science/article/pii/S2214785315005350. 4th International Conference on Materials Processing and Characterzation
    • Koli DK, Agnihotri G, Purohit R (2015) Advanced aluminium matrix composites: the critical need of automotive and aerospace engineering fields. Mater Today: Proc 2(4):3032–3041. 10.1016/j.matpr.2015.07.290http://www.sciencedirect.com/science/article/pii/S2214785315005350. 4th International Conference on Materials Processing and Characterzation
    • (2015) Mater Today: Proc , vol.2 , Issue.4 , pp. 3032-3041
    • Koli, D.K.1    Agnihotri, G.2    Purohit, R.3
  • 12
    • 0034921649 scopus 로고    scopus 로고
    • Modelling the correlation between proprocess parameters and properties in titanium alloys using artificial neural networks
    • Malinov S, Sha W, McKeown J (2001) Modelling the correlation between proprocess parameters and properties in titanium alloys using artificial neural networks. Comput Mater Sci 21:375–394
    • (2001) Comput Mater Sci , vol.21 , pp. 375-394
    • Malinov, S.1    Sha, W.2    McKeown, J.3
  • 13
    • 84957711990 scopus 로고    scopus 로고
    • An intelligent system for squeeze casting process—soft computing based approach
    • Manjunath P, Prasad K, Mahesh P (2016) An intelligent system for squeeze casting process—soft computing based approach. Int J Adv Manuf Technol 86:3051–3065
    • (2016) Int J Adv Manuf Technol , vol.86 , pp. 3051-3065
    • Manjunath, P.1    Prasad, K.2    Mahesh, P.3
  • 15
    • 0026853354 scopus 로고
    • Hierarchical neural networks
    • Mavrovouniotis M, Chang S (1992) Hierarchical neural networks. Comput Chem Eng 16 (4):347–369. 10.1016/0098-1354(92)80053-C, http://www.sciencedirect.com/science/article/pii/009813549280053C. Neutral network applications in chemical engineering
    • (1992) Comput Chem Eng , vol.16 , Issue.4 , pp. 347-369
    • Mavrovouniotis, M.1    Chang, S.2
  • 16
    • 51649083734 scopus 로고    scopus 로고
    • Correlation between processing parameters and strain-induced martensitic transformation in cold worked aisi 301 stainless steel
    • Mirzadeh H, Najafizadeh A (2008) Correlation between processing parameters and strain-induced martensitic transformation in cold worked aisi 301 stainless steel. Mater Charact 59(11):1650–1654
    • (2008) Mater Charact , vol.59 , Issue.11 , pp. 1650-1654
    • Mirzadeh, H.1    Najafizadeh, A.2
  • 17
    • 0034011674 scopus 로고    scopus 로고
    • Application of hard coatings in aluminium die casting — soldering, erosion and thermal fatigue behaviour
    • Mitterer C, Holler F, Ustel F, Heim D (2000) Application of hard coatings in aluminium die casting — soldering, erosion and thermal fatigue behaviour. Surf Coatings Technol 125:233–239
    • (2000) Surf Coatings Technol , vol.125 , pp. 233-239
    • Mitterer, C.1    Holler, F.2    Ustel, F.3    Heim, D.4
  • 18
    • 85068878976 scopus 로고    scopus 로고
    • Design and application of a quantitative forecast model for determination of the properties of aluminum alloys used in die casting
    • Muñoz-Ibáñez C, Alfaro-Ponce M, Perez-Lechuga G, Pescador-Rojas JA (2018) Design and application of a quantitative forecast model for determination of the properties of aluminum alloys used in die casting. Int J Met, 1–14
    • (2018) Int J Met , pp. 1-14
    • Muñoz-Ibáñez, C.1    Alfaro-Ponce, M.2    Perez-Lechuga, G.3    Pescador-Rojas, J.A.4
  • 20
    • 84867637615 scopus 로고    scopus 로고
    • Key computational modeling issues in integrated computational materials engineering
    • Panchal J, Kalidindi S, McDowell D (2013) Key computational modeling issues in integrated computational materials engineering. Comput Aided Des 45:4–25
    • (2013) Comput Aided Des , vol.45 , pp. 4-25
    • Panchal, J.1    Kalidindi, S.2    McDowell, D.3
  • 21
    • 14744282910 scopus 로고    scopus 로고
    • A fuzzy logic controller for the molten steel level control of strip casting processes
    • Park Y, Cho H (2005) A fuzzy logic controller for the molten steel level control of strip casting processes. Control Eng Pract 13(13):821–834
    • (2005) Control Eng Pract , vol.13 , Issue.13 , pp. 821-834
    • Park, Y.1    Cho, H.2
  • 24
    • 85020416426 scopus 로고    scopus 로고
    • Comparison of artificial neural networks (ann) and response surface methodology (rsm) modeling approaches in predicting the deposition efficiency of plasma sprayed alumina coatings on az31b magnesium alloy
    • Thirumalaikumarasamy D, Balasubramanian V, Sabari S, Vignesh S (2017) Comparison of artificial neural networks (ann) and response surface methodology (rsm) modeling approaches in predicting the deposition efficiency of plasma sprayed alumina coatings on az31b magnesium alloy. J Adv Microsc Res 12(1):40–49
    • (2017) J Adv Microsc Res , vol.12 , Issue.1 , pp. 40-49
    • Thirumalaikumarasamy, D.1    Balasubramanian, V.2    Sabari, S.3    Vignesh, S.4
  • 25
    • 84921507855 scopus 로고    scopus 로고
    • Modeling of the prediction of densification behavior of powder metallurgy al–cu–mg/b4c composites using artificial neural networks
    • Varol T, Canakci A, Ozsahin S (2015) Modeling of the prediction of densification behavior of powder metallurgy al–cu–mg/b4c composites using artificial neural networks. Acta Metallurgica Sinica (English Letters) 28 (2):182–195
    • (2015) Acta Metallurgica Sinica (English Letters) , vol.28 , Issue.2 , pp. 182-195
    • Varol, T.1    Canakci, A.2    Ozsahin, S.3
  • 26
    • 69649102176 scopus 로고    scopus 로고
    • Optimization of high-pressure die-casting process parameters using artificial neural network
    • Zheng J, Wang Q, Zhao P, Wu C (2009) Optimization of high-pressure die-casting process parameters using artificial neural network. Int J Adv Manuf Technol 44:667–674
    • (2009) Int J Adv Manuf Technol , vol.44 , pp. 667-674
    • Zheng, J.1    Wang, Q.2    Zhao, P.3    Wu, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.