-
2
-
-
84919881041
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
In 1
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In ICML, 2014. 1
-
(2014)
ICML
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
3
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
In 1
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 1
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
6
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
In 7
-
K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, 2015. 7
-
(2015)
ICCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
7
-
-
84986274465
-
Deep residual learning for image recognition
-
In 1, 2, 3, 4, 5, 6, 7, 8
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016. 1, 2, 3, 4, 5, 6, 7, 8
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
8
-
-
84990056336
-
Identity mappings in deep residual networks
-
In 1, 2, 3, 4, 5, 6, 7, 8
-
K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In ECCV, 2016. 1, 2, 3, 4, 5, 6, 7, 8
-
(2016)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
10
-
-
85030482024
-
Deep networks with stochastic depth
-
In 1, 2, 4, 7, 8
-
G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger. Deep networks with stochastic depth. In ECCV, 2016. 1, 2, 4, 7, 8
-
(2016)
ECCV
-
-
Huang, G.1
Sun, Y.2
Liu, Z.3
Sedra, D.4
Weinberger, K.5
-
11
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
In 5
-
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015. 5
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
12
-
-
77956002520
-
Learning multiple layers of features from tiny images
-
2, 6
-
A. Krizhevsky. Learning multiple layers of features from tiny images. In Tech Report, 2009. 2, 6
-
(2009)
Tech Report
-
-
Krizhevsky, A.1
-
13
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
In, 1, 2
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. In NIPS, 2012. 1, 2
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
15
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
7
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541-551, 1989. 7
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
16
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
1
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998. 1
-
(1998)
Proceedings of The IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
17
-
-
85009928594
-
Deeply-supervised nets
-
In 7
-
C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-supervised nets. In AISTATS, 2015. 7
-
(2015)
AISTATS
-
-
Lee, C.-Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
18
-
-
85083953135
-
Network in network
-
In, 6, 7
-
M. Lin, Q. Chen, and S. Yan. Network in network. In ICLR, 2014. 6, 7
-
(2014)
ICLR
-
-
Lin, M.1
Chen, Q.2
Yan, S.3
-
19
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
In 1
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015. 1
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
20
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
In 5
-
V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, 2010. 5
-
(2010)
ICML
-
-
Nair, V.1
Hinton, G.E.2
-
21
-
-
85083953559
-
Fitnets: Hints for thin deep nets
-
In 7
-
A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio. Fitnets: Hints for thin deep nets. In ICLR, 2015. 7
-
(2015)
ICLR
-
-
Romero, A.1
Ballas, N.2
Kahou, S.E.3
Chassang, A.4
Gatta, C.5
Bengio, Y.6
-
22
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
1, 8
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3):211-252, 2015. 1, 8
-
(2015)
International Journal of Computer Vision
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
23
-
-
85083951635
-
Overfeat: Integrated recognition, localization and detection using convolutional networks
-
In 1
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014. 1
-
(2014)
ICLR
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
25
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
In 1, 2, 3, 4, 7
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. 1, 2, 3, 4, 7
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
26
-
-
85018925999
-
Swapout: Learning an ensemble of deep architectures
-
In 7
-
S. Singh, D. Hoiem, and D. Forsyth. Swapout: Learning an ensemble of deep architectures. In NIPS, 2016. 7
-
(2016)
NIPS
-
-
Singh, S.1
Hoiem, D.2
Forsyth, D.3
-
28
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
8
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929-1958, 2014. 8
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
30
-
-
84983383396
-
Inception-v4, inception-resnet and the impact of residual connections on learning
-
In, 1, 8
-
C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4, inception-resnet and the impact of residual connections on learning. In ICLR Workshop, 2016. 1, 8
-
(2016)
ICLR Workshop
-
-
Szegedy, C.1
Ioffe, S.2
Vanhoucke, V.3
-
31
-
-
84937522268
-
Going deeper with convolutions
-
In 1, 2, 8
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015. 1, 2, 8
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
32
-
-
84986296808
-
Rethinking the inception architecture for computer vision
-
In 8
-
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. In CVPR, 2016. 8
-
(2016)
CVPR
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
33
-
-
85019250516
-
Residual networks behave like ensembles of relatively shallow networks
-
In 1, 2, 3, 4
-
A. Veit, M. Wilber, and S. Belongie. Residual networks behave like ensembles of relatively shallow networks. In NIPS, 2016. 1, 2, 3, 4
-
(2016)
NIPS
-
-
Veit, A.1
Wilber, M.2
Belongie, S.3
-
34
-
-
85047020267
-
Wide residual networks
-
In 2, 6, 7, 8
-
S. Zagoruyko and N. Komodakis. Wide residual networks. In BMVC, 2016. 2, 6, 7, 8
-
(2016)
BMVC
-
-
Zagoruyko, S.1
Komodakis, N.2
-
35
-
-
84921476116
-
Visualizing and understanding convolutional networks
-
In, 1,2
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014. 1, 2
-
(2014)
ECCV
-
-
Zeiler, M.D.1
Fergus, R.2
|