메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 2798-2807

A Bayesian data augmentation approach for learning deep models

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; MATHEMATICAL TRANSFORMATIONS; SAMPLING;

EID: 85047015651     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (225)

References (31)
  • 2
    • 84862612564 scopus 로고    scopus 로고
    • On contrastive divergence learning
    • Citeseer
    • M. A. Carreira-Perpinan and G. E. Hinton. On contrastive divergence learning. In AISTATS, Volume 10, pages 33-40. Citeseer, 2005.
    • (2005) AISTATS , vol.10 , pp. 33-40
    • Carreira-Perpinan, M.A.1    Hinton, G.E.2
  • 4
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • ACM
    • R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the 25th international conference on Machine learning, pages 160-167. ACM, 2008.
    • (2008) Proceedings of the 25th International Conference on Machine Learning , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 20
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 21
    • 85047009423 scopus 로고    scopus 로고
    • Triple generative adversarial nets
    • C. Li, K. Xu, J. Zhu, and B. Zhang. Triple generative adversarial nets. CoRR, abs/1703.02291, 2017.
    • (2017) CoRR
    • Li, C.1    Xu, K.2    Zhu, J.3    Zhang, B.4
  • 27
    • 84933585162 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
    • (2014) CoRR
    • Simonyan, K.1    Zisserman, A.2
  • 28
    • 0039215743 scopus 로고
    • Tools for statistical inference: Observed data and data augmentation methods
    • M. A. Tanner. Tools for statistical inference: Observed data and data augmentation methods. Lecture Notes in Statistics, 67, 1991.
    • (1991) Lecture Notes in Statistics , vol.67
    • Tanner, M.A.1
  • 29
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • M. A. Tanner and W. H. Wong. The calculation of posterior distributions by data augmentation. Journal of the American statistical Association, 82(398):528-540, 1987.
    • (1987) Journal of the American Statistical Association , vol.82 , Issue.398 , pp. 528-540
    • Tanner, M.A.1    Wong, W.H.2
  • 30
    • 56149104083 scopus 로고    scopus 로고
    • Effective training of a neural network character classifier for word recognition
    • L. Yaeger, R. Lyon, and B. Webb. Effective training of a neural network character classifier for word recognition. In NIPS, Volume 9, pages 807-813, 1996.
    • (1996) NIPS , vol.9 , pp. 807-813
    • Yaeger, L.1    Lyon, R.2    Webb, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.