-
1
-
-
84958264664
-
-
Abadi, Martín, Agarwal, Ashish, Barham, Paul, Brevdo, Eugene, Chen, Zhifeng, Citro, Craig, Corrado, Greg S., Davis, Andy, Dean, Jeffrey, Devin, Matthieu, Ghemawat, Sanjay, Goodfellow, Ian, Harp, Andrew, Irving, Geoffrey, Isard, Michael, Jia, Yangqing, Jozefowicz, Rafal, Kaiser, Lukasz, Kudlur, Manjunath, Levenberg, Josh, Mané, Dan, Monga, Rajat, Moore, Sherry, Murray, Derek, Olah, Chris, Schuster, Mike, Shlens, Jonathon, Steiner, Benoit, Sutskever, Ilya, Talwar, Kunal, Tucker, Paul, Vanhoucke, Vincent, Vasudevan, Vijay, Viégas, Fernanda, Vinyals, Oriol, Warden, Pete, Wattenberg, Martin, Wicke, Martin, Yu, Yuan, and Zheng, Xiaoqiang. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015.
-
(2015)
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
Ghemawat, S.11
Goodfellow, I.12
Harp, A.13
Irving, G.14
Isard, M.15
Jia, Y.16
Jozefowicz, R.17
Kaiser, L.18
Kudlur, M.19
Levenberg, J.20
Mané, D.21
Monga, R.22
Moore, S.23
Murray, D.24
Olah, C.25
Schuster, M.26
Shlens, J.27
Steiner, B.28
Sutskever, I.29
Talwar, K.30
Tucker, P.31
Vanhoucke, V.32
Vasudevan, V.33
Viégas, F.34
Vinyals, O.35
Warden, P.36
Wattenberg, M.37
Wicke, M.38
Yu, Y.39
Zheng, X.40
more..
-
2
-
-
85090175774
-
-
[cs, stat], December arXiv: 1412.4864
-
Bachman, Philip, Alsharif, Ouais, and Precup, Doina. Learning with Pseudo-Ensembles. arXiv:1412.4864 [cs, stat], December 2014. arXiv: 1412.4864.
-
(2014)
Learning with Pseudo-Ensembles
-
-
Bachman, P.1
Alsharif, O.2
Precup, D.3
-
3
-
-
33749545215
-
Model compression
-
ACM
-
Buciluǎ, Cristian, Caruana, Rich, and Niculescu-Mizil, Alexandru. Model compression. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 535-541. ACM, 2006.
-
(2006)
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 535-541
-
-
Buciluǎ, C.1
Caruana, R.2
Niculescu-Mizil, A.3
-
7
-
-
85045198438
-
-
[cs], June arXiv: 1706.04599
-
Guo, Chuan, Pleiss, Geoff, Sun, Yu, and Weinberger, Kilian Q. On Calibration of Modern Neural Networks. arXiv:1706.04599 [cs], June 2017. arXiv: 1706.04599.
-
(2017)
On Calibration of Modern Neural Networks
-
-
Guo, C.1
Pleiss, G.2
Sun, Y.3
Weinberger, K.Q.4
-
8
-
-
84958589374
-
-
[cs], December arXiv: 1512.03385
-
He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep Residual Learning for Image Recognition. arXiv:1512.03385 [cs], December 2015. arXiv: 1512.03385.
-
(2015)
Deep Residual Learning for Image Recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
9
-
-
84959176782
-
-
[cs, stat], March arXiv: 1503.02531
-
Hinton, Geoffrey, Vinyals, Oriol, and Dean, Jeff. Distilling the Knowledge in a Neural Network. arXiv:1503.02531 [cs, stat], March 2015. arXiv: 1503.02531.
-
(2015)
Distilling the Knowledge in a Neural Network
-
-
Hinton, G.1
Vinyals, O.2
Dean, J.3
-
10
-
-
85040697657
-
-
[cs], September arXiv: 1709.01507
-
Hu, Jie, Shen, Li, and Sun, Gang. Squeeze-and-Excitation Networks. arXiv:1709.01507 [cs], September 2017. arXiv: 1709.01507.
-
(2017)
Squeeze-and-Excitation Networks
-
-
Hu, J.1
Shen, L.2
Sun, G.3
-
11
-
-
84984824417
-
-
[cs], March arXiv: 1603.09382
-
Huang, Gao, Sun, Yu, Liu, Zhuang, Sedra, Daniel, and Weinberger, Kilian. Deep Networks with Stochastic Depth. arXiv:1603.09382 [cs], March 2016. arXiv: 1603.09382.
-
(2016)
Deep Networks with Stochastic Depth
-
-
Huang, G.1
Sun, Y.2
Liu, Z.3
Sedra, D.4
Weinberger, K.5
-
14
-
-
84893676344
-
Rectifier nonlinearities improve neural network acoustic models
-
Maas, Andrew L., Hannun, Awni Y., and Ng, Andrew Y. Rectifier nonlinearities improve neural network acoustic models. In Proc. ICML, Volume 30, 2013.
-
(2013)
Proc. ICML
, vol.30
-
-
Maas, A.L.1
Hannun, A.Y.2
Ng, A.Y.3
-
15
-
-
85037361819
-
-
[cs, stat], April arXiv: 1704.03976
-
Miyato, Takeru, Maeda, Shin-ichi, Koyama, Masanori, and Ishii, Shin. Virtual Adversarial Training: a Regularization Method for Supervised and Semi-supervised Learning. arXiv:1704.03976 [cs, stat], April 2017. arXiv: 1704.03976.
-
(2017)
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-supervised Learning
-
-
Miyato, T.1
Maeda, S.-I.2
Koyama, M.3
Ishii, S.4
-
16
-
-
84865114495
-
Reading digits in natural images with unsupervised feature learning
-
Netzer, Yuval, Wang, Tao, Coates, Adam, Bissacco, Alessandro, Wu, Bo, and Ng, Andrew Y. Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.
-
(2011)
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
-
-
Netzer, Y.1
Wang, T.2
Coates, A.3
Bissacco, A.4
Wu, B.5
Ng, A.Y.6
-
17
-
-
84998862025
-
-
[cs, stat], November arXiv: 1511.04508
-
Papernot, Nicolas, McDaniel, Patrick, Wu, Xi, Jha, Somesh, and Swami, Ananthram. Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks. arXiv:1511.04508 [cs, stat], November 2015. arXiv: 1511.04508.
-
(2015)
Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks
-
-
Papernot, N.1
McDaniel, P.2
Wu, X.3
Jha, S.4
Swami, A.5
-
18
-
-
0026899240
-
Acceleration of stochastic approximation by averaging
-
July
-
Polyak, B. T. and Juditsky, A. B. Acceleration of Stochastic Approximation by Averaging. SIAM J. Control Optim., 30(4):838-855, July 1992. ISSN 0363-0129. doi:10.1137/0330046.
-
(1992)
SIAM J. Control Optim.
, vol.30
, Issue.4
, pp. 838-855
-
-
Polyak, B.T.1
Juditsky, A.B.2
-
19
-
-
85047016028
-
-
[cs, stat], September arXiv: 1609.08976
-
Pu, Yunchen, Gan, Zhe, Henao, Ricardo, Yuan, Xin, Li, Chunyuan, Stevens, Andrew, and Carin, Lawrence. Variational Autoencoder for Deep Learning of Images, Labels and Captions. arXiv:1609.08976 [cs, stat], September 2016. arXiv: 1609.08976.
-
(2016)
Variational Autoencoder for Deep Learning of Images, Labels and Captions
-
-
Pu, Y.1
Gan, Z.2
Henao, R.3
Yuan, X.4
Li, C.5
Stevens, A.6
Carin, L.7
-
20
-
-
84965136229
-
Semi-supervised learning with ladder networks
-
Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R. (eds.) Curran Associates, Inc.
-
Rasmus, Antti, Berglund, Mathias, Honkala, Mikko, Valpola, Harri, and Raiko, Tapani. Semi-supervised Learning with Ladder Networks. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 28, pp. 3546-3554. Curran Associates, Inc., 2015.
-
(2015)
Advances in Neural Information Processing Systems 28
, pp. 3546-3554
-
-
Rasmus, A.1
Berglund, M.2
Honkala, M.3
Valpola, H.4
Raiko, T.5
-
21
-
-
84909978410
-
-
[cs], September arXiv: 1409.0575
-
Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan, Satheesh, Sanjeev, Ma, Sean, Huang, Zhiheng, Karpathy, Andrej, Khosla, Aditya, Bernstein, Michael, Berg, Alexander C., and FeiFei, Li. ImageNet Large Scale Visual Recognition Challenge. arXiv:1409.0575 [cs], September 2014. arXiv: 1409.0575.
-
(2014)
ImageNet Large Scale Visual Recognition Challenge
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
FeiFei, L.12
-
22
-
-
85019203095
-
Regularization with stochastic transformations and perturbations for deep semi-supervised learning
-
Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R. (eds.) Curran Associates, Inc.
-
Sajjadi, Mehdi, Javanmardi, Mehran, and Tasdizen, Tolga. Regularization With Stochastic Transformations and Perturbations for Deep Semi-Supervised Learning. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 29, pp. 1163-1171. Curran Associates, Inc., 2016.
-
(2016)
Advances in Neural Information Processing Systems 29
, pp. 1163-1171
-
-
Sajjadi, M.1
Javanmardi, M.2
Tasdizen, T.3
-
23
-
-
85017457992
-
Weight normalization: A simple reparameterization to accelerate training of deep neural networks
-
Salimans, Tim and Kingma, Diederik P. Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In Advances in Neural Information Processing Systems, pp. 901-901, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 901
-
-
Salimans, T.1
Kingma, D.P.2
-
24
-
-
85018875486
-
Improved techniques for training gans
-
Salimans, Tim, Goodfellow, Ian, Zaremba, Wojciech, Cheung, Vicki, Radford, Alec, and Chen, Xi. Improved techniques for training gans. In Advances in Neural Information Processing Systems, pp. 2226-2234, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 2226-2234
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
25
-
-
0026017007
-
Creating artificial neural networks that generalize
-
Sietsma, Jocelyn and Dow, Robert JF. Creating artificial neural networks that generalize. Neural networks, 4(1):67-79, 1991.
-
(1991)
Neural Networks
, vol.4
, Issue.1
, pp. 67-79
-
-
Sietsma, J.1
Dow, R.J.F.2
-
26
-
-
85044317583
-
-
[cs], May arXiv: 1605.06465
-
Singh, Saurabh, Hoiem, Derek, and Forsyth, David. Swapout: Learning an ensemble of deep architectures. arXiv:1605.06465 [cs], May 2016. arXiv: 1605.06465.
-
(2016)
Swapout: Learning an Ensemble of Deep Architectures
-
-
Singh, S.1
Hoiem, D.2
Forsyth, D.3
-
27
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
January
-
Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res., 15(1):1929-1958, January 2014. ISSN 1532-4435.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
29
-
-
85030979243
-
-
[cs, stat], July arXiv: 1307.1493
-
Wager, Stefan, Wang, Sida, and Liang, Percy. Dropout Training as Adaptive Regularization. arXiv:1307.1493 [cs, stat], July 2013. arXiv: 1307.1493.
-
(2013)
Dropout Training as Adaptive Regularization
-
-
Wager, S.1
Wang, S.2
Liang, P.3
-
30
-
-
84899064374
-
-
Wan, Li, Zeiler, Matthew, Zhang, Sixin, Le Cun, Yann, and Fergus, Rob. Regularization of Neural Networks using DropConnect. pp. 1058-1066, 2013.
-
(2013)
Regularization of Neural Networks Using DropConnect
, pp. 1058-1066
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
Le Cun, Y.4
Fergus, R.5
-
31
-
-
84872553130
-
Deep learning via semi-supervised embedding
-
Springer
-
Weston, Jason, Ratle, Frédéric, Mobahi, Hossein, and Collobert, Ronan. Deep learning via semi-supervised embedding. In Neural Networks: Tricks of the Trade, pp. 639-655. Springer, 2012.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 639-655
-
-
Weston, J.1
Ratle, F.2
Mobahi, H.3
Collobert, R.4
-
32
-
-
85027970290
-
-
[cs], November arXiv: 1611.05431
-
Xie, Saining, Girshick, Ross, Dollár, Piotr, Tu, Zhuowen, and He, Kaiming. Aggregated Residual Transformations for Deep Neural Networks. arXiv:1611.05431 [cs], November 2016. arXiv: 1611.05431.
-
(2016)
Aggregated Residual Transformations for Deep Neural Networks
-
-
Xie, S.1
Girshick, R.2
Dollár, P.3
Tu, Z.4
He, K.5
|