-
1
-
-
84857501996
-
Experience replay for real-time reinforcement learning control
-
Sander Adam, Lucian Busoniu, and Robert Babuska. Experience replay for real-time reinforcement learning control. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(2):201-212, 2012.
-
(2012)
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
, vol.42
, Issue.2
, pp. 201-212
-
-
Adam, S.1
Busoniu, L.2
Babuska, R.3
-
2
-
-
84897558007
-
Making a science of model search: Hyperpa-rameter optimization in hundreds of dimensions for vision architectures
-
James Bergstra, Daniel Yamins, and David D Cox. Making a science of model search: Hyperpa-rameter optimization in hundreds of dimensions for vision architectures. ICML (1), 28:115-123, 2013.
-
(2013)
ICML
, vol.28
, Issue.1
, pp. 115-123
-
-
Bergstra, J.1
Yamins, D.2
Cox, D.D.3
-
3
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter optimization. NIPS, pp. 2546-2554, 2011.
-
(2011)
NIPS
, pp. 2546-2554
-
-
Bergstra, J.S.1
Bardenet, R.2
Bengio, Y.3
Kégl, B.4
-
6
-
-
84949921865
-
Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
-
Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. IJCAI, 2015.
-
(2015)
IJCAI
-
-
Domhan, T.1
Springenberg, J.T.2
Hutter, F.3
-
7
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. AISTATS, 9:249-256, 2010.
-
(2010)
AISTATS
, vol.9
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
8
-
-
84897543523
-
Max-out networks
-
Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C Courville, and Yoshua Bengio. Max-out networks. ICML (3), 28:1319-1327, 2013.
-
(2013)
ICML
, vol.28
, Issue.3
, pp. 1319-1327
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.C.4
Bengio, Y.5
-
10
-
-
84990050094
-
Identity mappings in deep residual networks
-
Springer
-
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In European Conference on Computer Vision, pp. 630-645. Springer, 2016.
-
(2016)
European Conference on Computer Vision
, pp. 630-645
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
11
-
-
84913555165
-
-
arXiv preprint
-
Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
14
-
-
84930630277
-
Deep learning
-
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
15
-
-
85009928594
-
Deeply-supervised nets
-
Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-supervised nets. AISTATS, 2(3):6, 2015.
-
(2015)
AISTATS
, vol.2
, Issue.3
, pp. 6
-
-
Lee, C.-Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
16
-
-
85067565710
-
Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree
-
Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree. International Conference on Artificial Intelligence and Statistics, 2016.
-
(2016)
International Conference on Artificial Intelligence and Statistics
-
-
Lee, C.-Y.1
Gallagher, P.W.2
Tu, Z.3
-
17
-
-
84979924150
-
End-to-end training of deep visuo-motor policies
-
Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-motor policies. JMLR, 17(39):1-40, 2016.
-
(2016)
JMLR
, vol.17
, Issue.39
, pp. 1-40
-
-
Levine, S.1
Finn, C.2
Darrell, T.3
Abbeel, P.4
-
18
-
-
84959193001
-
Recurrent convolutional neural network for object recognition
-
Ming Liang and Xiaolin Hu. Recurrent convolutional neural network for object recognition. CVPR, pp. 3367-3375, 2015.
-
(2015)
CVPR
, pp. 3367-3375
-
-
Liang, M.1
Hu, X.2
-
19
-
-
84965135289
-
-
arXiv preprint
-
Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.
-
(2015)
Continuous Control with Deep Reinforcement Learning
-
-
Lillicrap, T.P.1
Hunt, J.J.2
Pritzel, A.3
Heess, N.4
Erez, T.5
Tassa, Y.6
Silver, D.7
Wierstra, D.8
-
20
-
-
0000123778
-
Self-improving reactive agents based on reinforcement learning, planning and teaching
-
Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine Learning, 8(3-4):293-321, 1992.
-
(1992)
Machine Learning
, vol.8
, Issue.3-4
, pp. 293-321
-
-
Lin, L.-J.1
-
21
-
-
0003673017
-
Reinforcement learning for robots using neural networks
-
Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical report, DTIC Document, 1993.
-
(1993)
Technical Report, DTIC Document
-
-
Lin, L.-J.1
-
23
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.
-
(2015)
Nature
, vol.518
, Issue.7540
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.A.4
Veness, J.5
Belle-Mare, M.G.6
Graves, A.7
Riedmiller, M.8
Fidjeland, A.K.9
Ostrovski, G.10
-
24
-
-
73449129720
-
A high-throughput screening approach to discovering good forms of biologically inspired visual representation
-
Nicolas Pinto, David Doukhan, James J DiCarlo, and David D Cox. A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Computational Biology, 5(11):e1000579, 2009.
-
(2009)
PLoS Computational Biology
, vol.5
, Issue.11
-
-
Pinto, N.1
Doukhan, D.2
DiCarlo, J.J.3
Cox, D.D.4
-
25
-
-
84964544562
-
-
arXiv preprint
-
Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.
-
(2014)
Fitnets: Hints for Thin Deep Nets
-
-
Romero, A.1
Ballas, N.2
Kahou, S.E.3
Chassang, A.4
Gatta, C.5
Bengio, Y.6
-
28
-
-
84874575248
-
Convolutional neural networks applied to house numbers digit classification
-
Pierre Sermanet, Soumith Chintala, and Yann LeCun. Convolutional neural networks applied to house numbers digit classification. ICPR, pp. 3288-3291, 2012.
-
(2012)
ICPR
, pp. 3288-3291
-
-
Sermanet, P.1
Chintala, S.2
LeCun, Y.3
-
29
-
-
84887328988
-
Pedestrian detection with unsupervised multi-stage feature learning
-
Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala, and Yann LeCun. Pedestrian detection with unsupervised multi-stage feature learning. CVPR, pp. 3626-3633, 2013.
-
(2013)
CVPR
, pp. 3626-3633
-
-
Sermanet, P.1
Kavukcuoglu, K.2
Chintala, S.3
LeCun, Y.4
-
30
-
-
84949985138
-
Taking the human out of the loop: A review of Bayesian optimization
-
Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Freitas. Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1): 148-175, 2016.
-
(2016)
Proceedings of the IEEE
, vol.104
, Issue.1
, pp. 148-175
-
-
Shahriari, B.1
Swersky, K.2
Wang, Z.3
Adams, R.P.4
De Freitas, N.5
-
31
-
-
84963949906
-
Mastering the game of go with deep neural networks and tree search
-
David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.
-
(2016)
Nature
, vol.529
, Issue.7587
, pp. 484-489
-
-
Silver, D.1
Huang, A.2
Maddison, C.J.3
Guez, A.4
Sifre, L.5
Van Den Driessche, G.6
Schrittwieser, J.7
Antonoglou, I.8
Panneershelvam, V.9
Lanctot, M.10
-
33
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning algorithms. NIPS, pp. 2951-2959, 2012.
-
(2012)
NIPS
, pp. 2951-2959
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
36
-
-
0036594106
-
Evolving neural networks through augmenting topologies
-
Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary Computation, 10(2):99-127, 2002.
-
(2002)
Evolutionary Computation
, vol.10
, Issue.2
, pp. 99-127
-
-
Stanley, K.O.1
Miikkulainen, R.2
-
37
-
-
84898939805
-
Multi-task Bayesian optimization
-
Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. NIPS, pp. 2004-2012, 2013.
-
(2013)
NIPS
, pp. 2004-2012
-
-
Swersky, K.1
Snoek, J.2
Adams, R.P.3
-
40
-
-
84899064374
-
Regularization of neural networks using dropconnect
-
Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization of neural networks using dropconnect. ICML, pp. 1058-1066, 2013.
-
(2013)
ICML
, pp. 1058-1066
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
Cun, Y.L.4
Fergus, R.5
-
41
-
-
0004049893
-
-
PhD thesis, University of Cambridge, England
-
Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis, University of Cambridge, England, 1989.
-
(1989)
Learning from Delayed Rewards
-
-
Watkins, C.J.C.H.1
|