메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Designing neural network architectures using reinforcement learning

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; IMAGE CLASSIFICATION; ITERATIVE METHODS; MACHINE LEARNING; NEURAL NETWORKS; REINFORCEMENT LEARNING;

EID: 85079594941     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (820)

References (41)
  • 2
    • 84897558007 scopus 로고    scopus 로고
    • Making a science of model search: Hyperpa-rameter optimization in hundreds of dimensions for vision architectures
    • James Bergstra, Daniel Yamins, and David D Cox. Making a science of model search: Hyperpa-rameter optimization in hundreds of dimensions for vision architectures. ICML (1), 28:115-123, 2013.
    • (2013) ICML , vol.28 , Issue.1 , pp. 115-123
    • Bergstra, J.1    Yamins, D.2    Cox, D.D.3
  • 3
    • 85162384813 scopus 로고    scopus 로고
    • Algorithms for hyper-parameter optimization
    • James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter optimization. NIPS, pp. 2546-2554, 2011.
    • (2011) NIPS , pp. 2546-2554
    • Bergstra, J.S.1    Bardenet, R.2    Bengio, Y.3    Kégl, B.4
  • 6
    • 84949921865 scopus 로고    scopus 로고
    • Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
    • Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. IJCAI, 2015.
    • (2015) IJCAI
    • Domhan, T.1    Springenberg, J.T.2    Hutter, F.3
  • 7
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. AISTATS, 9:249-256, 2010.
    • (2010) AISTATS , vol.9 , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 14
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 17
    • 84979924150 scopus 로고    scopus 로고
    • End-to-end training of deep visuo-motor policies
    • Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-motor policies. JMLR, 17(39):1-40, 2016.
    • (2016) JMLR , vol.17 , Issue.39 , pp. 1-40
    • Levine, S.1    Finn, C.2    Darrell, T.3    Abbeel, P.4
  • 18
    • 84959193001 scopus 로고    scopus 로고
    • Recurrent convolutional neural network for object recognition
    • Ming Liang and Xiaolin Hu. Recurrent convolutional neural network for object recognition. CVPR, pp. 3367-3375, 2015.
    • (2015) CVPR , pp. 3367-3375
    • Liang, M.1    Hu, X.2
  • 20
    • 0000123778 scopus 로고
    • Self-improving reactive agents based on reinforcement learning, planning and teaching
    • Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine Learning, 8(3-4):293-321, 1992.
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 293-321
    • Lin, L.-J.1
  • 21
    • 0003673017 scopus 로고
    • Reinforcement learning for robots using neural networks
    • Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical report, DTIC Document, 1993.
    • (1993) Technical Report, DTIC Document
    • Lin, L.-J.1
  • 24
    • 73449129720 scopus 로고    scopus 로고
    • A high-throughput screening approach to discovering good forms of biologically inspired visual representation
    • Nicolas Pinto, David Doukhan, James J DiCarlo, and David D Cox. A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Computational Biology, 5(11):e1000579, 2009.
    • (2009) PLoS Computational Biology , vol.5 , Issue.11
    • Pinto, N.1    Doukhan, D.2    DiCarlo, J.J.3    Cox, D.D.4
  • 28
    • 84874575248 scopus 로고    scopus 로고
    • Convolutional neural networks applied to house numbers digit classification
    • Pierre Sermanet, Soumith Chintala, and Yann LeCun. Convolutional neural networks applied to house numbers digit classification. ICPR, pp. 3288-3291, 2012.
    • (2012) ICPR , pp. 3288-3291
    • Sermanet, P.1    Chintala, S.2    LeCun, Y.3
  • 29
    • 84887328988 scopus 로고    scopus 로고
    • Pedestrian detection with unsupervised multi-stage feature learning
    • Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala, and Yann LeCun. Pedestrian detection with unsupervised multi-stage feature learning. CVPR, pp. 3626-3633, 2013.
    • (2013) CVPR , pp. 3626-3633
    • Sermanet, P.1    Kavukcuoglu, K.2    Chintala, S.3    LeCun, Y.4
  • 30
    • 84949985138 scopus 로고    scopus 로고
    • Taking the human out of the loop: A review of Bayesian optimization
    • Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Freitas. Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1): 148-175, 2016.
    • (2016) Proceedings of the IEEE , vol.104 , Issue.1 , pp. 148-175
    • Shahriari, B.1    Swersky, K.2    Wang, Z.3    Adams, R.P.4    De Freitas, N.5
  • 33
    • 84869201485 scopus 로고    scopus 로고
    • Practical Bayesian optimization of machine learning algorithms
    • Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning algorithms. NIPS, pp. 2951-2959, 2012.
    • (2012) NIPS , pp. 2951-2959
    • Snoek, J.1    Larochelle, H.2    Adams, R.P.3
  • 36
    • 0036594106 scopus 로고    scopus 로고
    • Evolving neural networks through augmenting topologies
    • Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary Computation, 10(2):99-127, 2002.
    • (2002) Evolutionary Computation , vol.10 , Issue.2 , pp. 99-127
    • Stanley, K.O.1    Miikkulainen, R.2
  • 37
    • 84898939805 scopus 로고    scopus 로고
    • Multi-task Bayesian optimization
    • Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. NIPS, pp. 2004-2012, 2013.
    • (2013) NIPS , pp. 2004-2012
    • Swersky, K.1    Snoek, J.2    Adams, R.P.3
  • 39
  • 40
    • 84899064374 scopus 로고    scopus 로고
    • Regularization of neural networks using dropconnect
    • Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization of neural networks using dropconnect. ICML, pp. 1058-1066, 2013.
    • (2013) ICML , pp. 1058-1066
    • Wan, L.1    Zeiler, M.2    Zhang, S.3    Cun, Y.L.4    Fergus, R.5
  • 41


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.