-
1
-
-
84969206734
-
Solving the antibiotic crisis
-
G. D. Wright, Solving the antibiotic crisis. ACS Infect. Dis. 1, 80–84 (2015).
-
(2015)
ACS Infect. Dis.
, vol.1
, pp. 80-84
-
-
Wright, G.D.1
-
2
-
-
85020822860
-
AntiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification
-
K. Blin et al., antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45, W36–W41 (2017).
-
(2017)
Nucleic Acids Res
, vol.45
, pp. W36-W41
-
-
Blin, K.1
-
3
-
-
84918813440
-
Metabolic engineering of antibiotic factories: New tools for antibiotic production in actinomycetes
-
T. Weber et al., Metabolic engineering of antibiotic factories: New tools for antibiotic production in actinomycetes. Trends Biotechnol. 33, 15–26 (2015).
-
(2015)
Trends Biotechnol
, vol.33
, pp. 15-26
-
-
Weber, T.1
-
4
-
-
84895453461
-
Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites
-
K. S. Hwang, H. U. Kim, P. Charusanti, B. O. Palsson, S. Y. Lee, Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol. Adv. 32, 255–268 (2014).
-
(2014)
Biotechnol. Adv.
, vol.32
, pp. 255-268
-
-
Hwang, K.S.1
Kim, H.U.2
Charusanti, P.3
Palsson, B.O.4
Lee, S.Y.5
-
5
-
-
0037452723
-
PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin
-
B. Gust, G. L. Challis, K. Fowler, T. Kieser, K. F. Chater, PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. U.S.A. 100, 1541–1546 (2003).
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 1541-1546
-
-
Gust, B.1
Challis, G.L.2
Fowler, K.3
Kieser, T.4
Chater, K.F.5
-
6
-
-
0003869903
-
-
The John Innes Foundation, Norwich
-
T. Kieser, M. Bibb, M. Buttner, K. Chater, D. Hopwood, Practical Streptomyces Genetics (The John Innes Foundation, Norwich, 2000).
-
(2000)
Practical Streptomyces Genetics
-
-
Kieser, T.1
Bibb, M.2
Buttner, M.3
Chater, K.4
Hopwood, D.5
-
7
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
J. D. Sander, J. K. Joung, CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
8
-
-
84934947770
-
High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system
-
R. E. Cobb, Y. Wang, H. Zhao, High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 4, 723–728 (2015).
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 723-728
-
-
Cobb, R.E.1
Wang, Y.2
Zhao, H.3
-
9
-
-
84926466507
-
One-step high-efficiency CRISPR/ Cas9-mediated genome editing in Streptomyces
-
H. Huang, G. S. Zheng, W. H. Jiang, H. F. Hu, Y. H. Lu, One-step high-efficiency CRISPR/ Cas9-mediated genome editing in Streptomyces. Acta Biochim. Biophys. Sin. (Shanghai) 47, 231–243 (2015).
-
(2015)
Acta Biochim. Biophys. Sin. (Shanghai)
, vol.47
, pp. 231-243
-
-
Huang, H.1
Zheng, G.S.2
Jiang, W.H.3
Hu, H.F.4
Lu, Y.H.5
-
10
-
-
84940106526
-
CRISPR-Cas9 based engineering of actinomycetal genomes
-
Y. Tong, P. Charusanti, L. Zhang, T. Weber, S. Y. Lee, CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 4, 1020–1029 (2015).
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 1020-1029
-
-
Tong, Y.1
Charusanti, P.2
Zhang, L.3
Weber, T.4
Lee, S.Y.5
-
11
-
-
85072344046
-
CRISPR/Cas-based genome engineering in natural product discovery
-
Y. Tong, T. Weber, S. Y. Lee, CRISPR/Cas-based genome engineering in natural product discovery. Nat. Prod. Rep., 10.1039/c8np00089a (2018).
-
(2018)
Nat. Prod. Rep.
-
-
Tong, Y.1
Weber, T.2
Lee, S.Y.3
-
12
-
-
85063233714
-
Editing streptomycete genomes in the CRISPR/Cas9 age
-
F. Alberti, C. Corre, Editing streptomycete genomes in the CRISPR/Cas9 age. Nat. Prod. Rep., 10.1039/c8np00081f (2019).
-
(2019)
Nat. Prod. Rep.
-
-
Alberti, F.1
Corre, C.2
-
13
-
-
0031973808
-
Genetic instability of the Streptomyces chromosome
-
J. N. Volff, J. Altenbuchner, Genetic instability of the Streptomyces chromosome. Mol. Microbiol. 27, 239–246 (1998).
-
(1998)
Mol. Microbiol.
, vol.27
, pp. 239-246
-
-
Volff, J.N.1
Altenbuchner, J.2
-
14
-
-
85044583181
-
Genome plasticity is governed by double strand break DNA repair in Streptomyces
-
G. Hoff, C. Bertrand, E. Piotrowski, A. Thibessard, P. Leblond, Genome plasticity is governed by double strand break DNA repair in Streptomyces. Sci. Rep. 8, 5272 (2018).
-
(2018)
Sci. Rep.
, vol.8
, pp. 5272
-
-
Hoff, G.1
Bertrand, C.2
Piotrowski, E.3
Thibessard, A.4
Leblond, P.5
-
15
-
-
85044579211
-
Macbeth: Multiplex automated Corynebacterium glutamicum base editing method
-
Y. Wang et al., MACBETH: Multiplex automated Corynebacterium glutamicum base editing method. Metab. Eng. 47, 200–210 (2018).
-
(2018)
Metab. Eng.
, vol.47
, pp. 200-210
-
-
Wang, Y.1
-
16
-
-
85027502168
-
CRISPR-stop: Gene silencing through base-editing-induced nonsense mutations
-
C. Kuscu et al., CRISPR-STOP: Gene silencing through base-editing-induced nonsense mutations. Nat. Methods 14, 710–712 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 710-712
-
-
Kuscu, C.1
-
17
-
-
85030254880
-
CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons
-
e4
-
P. Billon et al., CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Mol. Cell 67, 1068–1079.e4 (2017).
-
(2017)
Mol. Cell
, vol.67
, pp. 1068-1079
-
-
Billon, P.1
-
18
-
-
85041620547
-
Deaminase-mediated multiplex genome editing in Escherichia coli
-
S. Banno, K. Nishida, T. Arazoe, H. Mitsunobu, A. Kondo, Deaminase-mediated multiplex genome editing in Escherichia coli. Nat. Microbiol. 3, 423–429 (2018).
-
(2018)
Nat. Microbiol.
, vol.3
, pp. 423-429
-
-
Banno, S.1
Nishida, K.2
Arazoe, T.3
Mitsunobu, H.4
Kondo, A.5
-
19
-
-
84971006562
-
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
-
A. C. Komor, Y. B. Kim, M. S. Packer, J. A. Zuris, D. R. Liu, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
-
(2016)
Nature
, vol.533
, pp. 420-424
-
-
Komor, A.C.1
Kim, Y.B.2
Packer, M.S.3
Zuris, J.A.4
Liu, D.R.5
-
20
-
-
85034861903
-
Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage
-
N. M. Gaudelli et al., Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).
-
(2017)
Nature
, vol.551
, pp. 464-471
-
-
Gaudelli, N.M.1
-
21
-
-
84958953000
-
Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage
-
F. Jiang et al., Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 867–871 (2016).
-
(2016)
Science
, vol.351
, pp. 867-871
-
-
Jiang, F.1
-
22
-
-
85053441028
-
The pSG5-based thermosensitive vector family for genome editing and gene expression in actinomycetes
-
G. Muth, The pSG5-based thermosensitive vector family for genome editing and gene expression in actinomycetes. Appl. Microbiol. Biotechnol. 102, 9067–9080 (2018).
-
(2018)
Appl. Microbiol. Biotechnol.
, vol.102
, pp. 9067-9080
-
-
Muth, G.1
-
23
-
-
0024515525
-
Thiostrepton-induced gene expression in Streptomyces lividans
-
T. Murakami, T. G. Holt, C. J. Thompson, Thiostrepton-induced gene expression in Streptomyces lividans. J. Bacteriol. 171, 1459–1466 (1989).
-
(1989)
J. Bacteriol.
, vol.171
, pp. 1459-1466
-
-
Murakami, T.1
Holt, T.G.2
Thompson, C.J.3
-
24
-
-
0035002129
-
Thiopeptide non-producing Streptomyces species carry the tipA gene: A clue to its function
-
B. S. Yun, T. Hidaka, T. Kuzuyama, H. Seto, Thiopeptide non-producing Streptomyces species carry the tipA gene: A clue to its function. J. Antibiot. (Tokyo) 54, 375–378 (2001).
-
(2001)
J. Antibiot. (Tokyo)
, vol.54
, pp. 375-378
-
-
Yun, B.S.1
Hidaka, T.2
Kuzuyama, T.3
Seto, H.4
-
25
-
-
84923674774
-
Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes
-
N. Schormann, R. Ricciardi, D. Chattopadhyay, Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes. Protein Sci. 23, 1667–1685 (2014).
-
(2014)
Protein Sci
, vol.23
, pp. 1667-1685
-
-
Schormann, N.1
Ricciardi, R.2
Chattopadhyay, D.3
-
26
-
-
24044438506
-
Close-fitting sleeves’: DNA damage recognition by the UvrABC nuclease system
-
B. Van Houten, D. L. Croteau, M. J. DellaVecchia, H. Wang, C. Kisker, ‘Close-fitting sleeves’: DNA damage recognition by the UvrABC nuclease system. Mutat. Res. 577, 92–117 (2005).
-
(2005)
Mutat. Res.
, vol.577
, pp. 92-117
-
-
van Houten, B.1
Croteau, D.L.2
DellaVecchia, M.J.3
Wang, H.4
Kisker, C.5
-
27
-
-
0032786233
-
A phylogenomic study of DNA repair genes, proteins, and processes
-
J. A. Eisen, P. C. Hanawalt, A phylogenomic study of DNA repair genes, proteins, and processes. Mutat. Res. 435, 171–213 (1999).
-
(1999)
Mutat. Res.
, vol.435
, pp. 171-213
-
-
Eisen, J.A.1
Hanawalt, P.C.2
-
28
-
-
84983290764
-
CRISPY-Web: An online resource to design sgRNAs for CRISPR applications
-
K. Blin, L. E. Pedersen, T. Weber, S. Y. Lee, CRISPy-web: An online resource to design sgRNAs for CRISPR applications. Synth. Syst. Biotechnol. 1, 118–121 (2016).
-
(2016)
Synth. Syst. Biotechnol.
, vol.1
, pp. 118-121
-
-
Blin, K.1
Pedersen, L.E.2
Weber, T.3
Lee, S.Y.4
-
29
-
-
84981516964
-
Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
-
K. Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).
-
(2016)
Science
, vol.353
, pp. aaf8729
-
-
Nishida, K.1
-
30
-
-
85050878241
-
Patscanui: An intuitive web interface for searching patterns in DNA and protein data
-
K. Blin, W. Wohlleben, T. Weber, Patscanui: An intuitive web interface for searching patterns in DNA and protein data. Nucleic Acids Res. 46, W205–W208 (2018).
-
(2018)
Nucleic Acids Res
, vol.46
, pp. W205-W208
-
-
Blin, K.1
Wohlleben, W.2
Weber, T.3
-
31
-
-
84924341659
-
The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas
-
G. Saraconi, F. Severi, C. Sala, G. Mattiuz, S. G. Conticello, The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biol. 15, 417 (2014).
-
(2014)
Genome Biol
, vol.15
, pp. 417
-
-
Saraconi, G.1
Severi, F.2
Sala, C.3
Mattiuz, G.4
Conticello, S.G.5
-
32
-
-
85062990961
-
Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos
-
E. Zuo et al., Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).
-
(2019)
Science
, vol.364
, pp. 289-292
-
-
Zuo, E.1
-
33
-
-
85063014306
-
Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice
-
S. Jin et al., Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).
-
(2019)
Science
, vol.364
, pp. 292-295
-
-
Jin, S.1
-
34
-
-
85073077320
-
Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST
-
Deposited 31 July 2019
-
Y. Tong et al., Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/bioproject/557658. Deposited 31 July 2019.
-
National Center for Biotechnology Information
-
-
Tong, Y.1
-
35
-
-
84917686994
-
Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq
-
D. E. Deatherage, J. E. Barrick, Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151, 165–188 (2014).
-
(2014)
Methods Mol. Biol.
, vol.1151
, pp. 165-188
-
-
Deatherage, D.E.1
Barrick, J.E.2
-
36
-
-
0037046560
-
Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)
-
S. D. Bentley et al., Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).
-
(2002)
Nature
, vol.417
, pp. 141-147
-
-
Bentley, S.D.1
-
37
-
-
0021223023
-
Restriction of bacteriophage plaque formation in Streptomyces spp
-
K. L. Cox, R. H. Baltz, Restriction of bacteriophage plaque formation in Streptomyces spp. J. Bacteriol. 159, 499–504 (1984).
-
(1984)
J. Bacteriol.
, vol.159
, pp. 499-504
-
-
Cox, K.L.1
Baltz, R.H.2
-
38
-
-
0023631193
-
A new shuttle cosmid vector, pKC505, for streptomycetes: Its use in the cloning of three different spiramycin-resistance genes from a Streptomyces ambofaciens library
-
M. A. Richardson, S. Kuhstoss, P. Solenberg, N. A. Schaus, R. N. Rao, A new shuttle cosmid vector, pKC505, for streptomycetes: Its use in the cloning of three different spiramycin-resistance genes from a Streptomyces ambofaciens library. Gene 61, 231–241 (1987).
-
(1987)
Gene
, vol.61
, pp. 231-241
-
-
Richardson, M.A.1
Kuhstoss, S.2
Solenberg, P.3
Schaus, N.A.4
Rao, R.N.5
-
39
-
-
0023254801
-
Cloning and nucleotide sequence of a carbomycin-resistance gene from Streptomyces thermotolerans
-
J. K. Epp, S. G. Burgett, B. E. Schoner, Cloning and nucleotide sequence of a carbomycin-resistance gene from Streptomyces thermotolerans. Gene 53, 73–83 (1987).
-
(1987)
Gene
, vol.53
, pp. 73-83
-
-
Epp, J.K.1
Burgett, S.G.2
Schoner, B.E.3
-
40
-
-
0022780876
-
Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptomyces fradiae
-
V. A. Birmingham et al., Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptomyces fradiae. Mol. Gen. Genet. 204, 532–539 (1986).
-
(1986)
Mol. Gen. Genet.
, vol.204
, pp. 532-539
-
-
Birmingham, V.A.1
-
41
-
-
85068818263
-
AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline
-
K. Blin et al., antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).
-
(2019)
Nucleic Acids Res
, vol.47
, pp. W81-W87
-
-
Blin, K.1
-
42
-
-
84888855061
-
Complete genome sequence of the kirromycin producer Streptomyces collinus Tü 365 consisting of a linear chromosome and two linear plasmids
-
C. Rückert et al., Complete genome sequence of the kirromycin producer Streptomyces collinus Tü 365 consisting of a linear chromosome and two linear plasmids. J. Biotechnol. 168, 739–740 (2013).
-
(2013)
J. Biotechnol.
, vol.168
, pp. 739-740
-
-
Rückert, C.1
-
43
-
-
0017078545
-
Stoffwechselprodukte von mikroorganismen. 154. Mitteilung. Nikkomycin, ein neuer hemmstoff der chitinsynthese bei pilzen
-
U. Dähn et al., Stoffwechselprodukte von mikroorganismen. 154. Mitteilung. Nikkomycin, ein neuer hemmstoff der chitinsynthese bei pilzen. Arch. Microbiol. 107, 143–160 (1976).
-
(1976)
Arch. Microbiol.
, vol.107
, pp. 143-160
-
-
Dähn, U.1
-
44
-
-
84958102110
-
Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365
-
D. Iftime et al., Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365. J. Ind. Microbiol. Biotechnol. 43, 277–291 (2016).
-
(2016)
J. Ind. Microbiol. Biotechnol.
, vol.43
, pp. 277-291
-
-
Iftime, D.1
-
45
-
-
85017588486
-
Polyketide bioderivatization using the promiscuous acyltransferase KirCII
-
E. M. Musiol-Kroll et al., Polyketide bioderivatization using the promiscuous acyltransferase KirCII. ACS Synth. Biol. 6, 421–427 (2017).
-
(2017)
ACS Synth. Biol.
, vol.6
, pp. 421-427
-
-
Musiol-Kroll, E.M.1
-
46
-
-
85042210154
-
Filling the gaps in the kirromycin biosynthesis: Deciphering the role of genes involved in ethylmalonyl-CoA supply and tailoring reactions
-
H. L. Robertsen et al., Filling the gaps in the kirromycin biosynthesis: Deciphering the role of genes involved in ethylmalonyl-CoA supply and tailoring reactions. Sci. Rep. 8, 3230 (2018).
-
(2018)
Sci. Rep.
, vol.8
, pp. 3230
-
-
Robertsen, H.L.1
-
47
-
-
77956498326
-
Sequence- And structure-specific RNA processing by a CRISPR endonuclease
-
R. E. Haurwitz, M. Jinek, B. Wiedenheft, K. Zhou, J. A. Doudna, Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358 (2010).
-
(2010)
Science
, vol.329
, pp. 1355-1358
-
-
Haurwitz, R.E.1
Jinek, M.2
Wiedenheft, B.3
Zhou, K.4
Doudna, J.A.5
-
48
-
-
85055342078
-
Mining actinomycetes for novel antibiotics in the omics era: Are we ready to exploit this new paradigm?
-
O. Genilloud, Mining actinomycetes for novel antibiotics in the omics era: Are we ready to exploit this new paradigm? Antibiotics (Basel) 7, 85 (2018).
-
(2018)
Antibiotics (Basel)
, vol.7
, pp. 85
-
-
Genilloud, O.1
-
50
-
-
84865329141
-
AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation
-
C. S. Nabel et al., AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat. Chem. Biol. 8, 751–758 (2012).
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 751-758
-
-
Nabel, C.S.1
|