-
1
-
-
84895487775
-
Peripheral coding of taste
-
Liman, E.R., Zhang, Y.V., and Montell, C. (2014). Peripheral coding of taste. Neuron 81, 984-1000.
-
(2014)
Neuron
, vol.81
, pp. 984-1000
-
-
Liman, E.R.1
Zhang, Y.V.2
Montell, C.3
-
2
-
-
85025067266
-
Taste buds: cells, signals and synapses
-
Roper, S.D., and Chaudhari, N. (2017). Taste buds: cells, signals and synapses. Nat. Rev. Neurosci. 18, 485-497.
-
(2017)
Nat. Rev. Neurosci.
, vol.18
, pp. 485-497
-
-
Roper, S.D.1
Chaudhari, N.2
-
3
-
-
0037016771
-
Molecular mechanisms of bitter and sweet taste transduction
-
Margolskee, R.F. (2002). Molecular mechanisms of bitter and sweet taste transduction. J. Biol. Chem. 277, 1-4.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 1-4
-
-
Margolskee, R.F.1
-
4
-
-
33751084573
-
The receptors and cells for mammalian taste
-
Chandrashekar, J., Hoon, M.A., Ryba, N.J., and Zuker, C.S. (2006). The receptors and cells for mammalian taste. Nature 444, 288-294.
-
(2006)
Nature
, vol.444
, pp. 288-294
-
-
Chandrashekar, J.1
Hoon, M.A.2
Ryba, N.J.3
Zuker, C.S.4
-
5
-
-
34250666600
-
The transduction channel TRPM5 is gated by intracellular calcium in taste cells
-
Zhang, Z., Zhao, Z., Margolskee, R., and Liman, E. (2007). The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J. Neurosci. 27, 5777-5786.
-
(2007)
J. Neurosci.
, vol.27
, pp. 5777-5786
-
-
Zhang, Z.1
Zhao, Z.2
Margolskee, R.3
Liman, E.4
-
6
-
-
0032929132
-
Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat
-
Kretz, O., Barbry, P., Bock, R., and Lindemann, B. (1999). Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J. Histochem. Cytochem. 47, 51-64.
-
(1999)
J. Histochem. Cytochem.
, vol.47
, pp. 51-64
-
-
Kretz, O.1
Barbry, P.2
Bock, R.3
Lindemann, B.4
-
7
-
-
39049105701
-
Amiloride-sensitive channels in type I fungiform taste cells in mouse
-
Vandenbeuch, A., Clapp, T.R., and Kinnamon, S.C. (2008). Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci. 9, 1.
-
(2008)
BMC Neurosci.
, vol.9
, pp. 1
-
-
Vandenbeuch, A.1
Clapp, T.R.2
Kinnamon, S.C.3
-
8
-
-
77949423784
-
The cells and peripheral representation of sodium taste in mice
-
Chandrashekar, J., Kuhn, C., Oka, Y., Yarmolinsky, D.A., Hummler, E., Ryba, N.J., and Zuker, C.S. (2010). The cells and peripheral representation of sodium taste in mice. Nature 464, 297-301.
-
(2010)
Nature
, vol.464
, pp. 297-301
-
-
Chandrashekar, J.1
Kuhn, C.2
Oka, Y.3
Yarmolinsky, D.A.4
Hummler, E.5
Ryba, N.J.6
Zuker, C.S.7
-
9
-
-
84874359134
-
High salt recruits aversive taste pathways
-
Oka, Y., Butnaru, M., von Buchholtz, L., Ryba, N.J., and Zuker, C.S. (2013). High salt recruits aversive taste pathways. Nature 494, 472-475.
-
(2013)
Nature
, vol.494
, pp. 472-475
-
-
Oka, Y.1
Butnaru, M.2
von Buchholtz, L.3
Ryba, N.J.4
Zuker, C.S.5
-
10
-
-
84958819057
-
Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms
-
Lewandowski, B.C., Sukumaran, S.K., Margolskee, R.F., and Bachmanov, A.A. (2016). Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms. J. Neurosci. 36, 1942-1953.
-
(2016)
J. Neurosci.
, vol.36
, pp. 1942-1953
-
-
Lewandowski, B.C.1
Sukumaran, S.K.2
Margolskee, R.F.3
Bachmanov, A.A.4
-
11
-
-
85071346604
-
The role of the anion in salt (NaCl) detection by mouse taste buds
-
Roebber, J.K., Roper, S.D., and Chaudhari, N. (2019). The role of the anion in salt (NaCl) detection by mouse taste buds. J. Neurosci. 39, 6224-6232.
-
(2019)
J. Neurosci.
, vol.39
, pp. 6224-6232
-
-
Roebber, J.K.1
Roper, S.D.2
Chaudhari, N.3
-
12
-
-
0001152938
-
Gustatory nerve impulses in rat, cat and rabbit
-
Pfaffmann, C. (1955). Gustatory nerve impulses in rat, cat and rabbit. J. Neurophysiol. 18, 429-440.
-
(1955)
J. Neurophysiol.
, vol.18
, pp. 429-440
-
-
Pfaffmann, C.1
-
13
-
-
0025875283
-
Taste-responsive neurons of the glossopharyngeal nerve of the rat
-
Frank, M.E. (1991). Taste-responsive neurons of the glossopharyngeal nerve of the rat. J. Neurophysiol. 65, 1452-1463.
-
(1991)
J. Neurophysiol.
, vol.65
, pp. 1452-1463
-
-
Frank, M.E.1
-
14
-
-
0020965027
-
Nerve fibers sensitive to ionic taste stimuli in chorda tympani of the rat
-
Frank, M.E., Contreras, R.J., and Hettinger, T.P. (1983). Nerve fibers sensitive to ionic taste stimuli in chorda tympani of the rat. J. Neurophysiol. 50, 941-960.
-
(1983)
J. Neurophysiol.
, vol.50
, pp. 941-960
-
-
Frank, M.E.1
Contreras, R.J.2
Hettinger, T.P.3
-
15
-
-
0019990481
-
Gustatory neural response in the mouse
-
Ninomiya, Y., Tonosaki, K., and Funakoshi, M. (1982). Gustatory neural response in the mouse. Brain Res. 244, 370-373.
-
(1982)
Brain Res.
, vol.244
, pp. 370-373
-
-
Ninomiya, Y.1
Tonosaki, K.2
Funakoshi, M.3
-
16
-
-
0032788924
-
Chorda tympani responses in two inbred strains of mice with different taste preferences
-
Frank, M.E., and Blizard, D.A. (1999). Chorda tympani responses in two inbred strains of mice with different taste preferences. Physiol. Behav. 67, 287-297.
-
(1999)
Physiol. Behav.
, vol.67
, pp. 287-297
-
-
Frank, M.E.1
Blizard, D.A.2
-
17
-
-
33747860824
-
The cells and logic for mammalian sour taste detection
-
Huang, A.L., Chen, X., Hoon, M.A., Chandrashekar, J., Guo, W., Trankner, D., Ryba, N.J., and Zuker, C.S. (2006). The cells and logic for mammalian sour taste detection. Nature 442, 934-938.
-
(2006)
Nature
, vol.442
, pp. 934-938
-
-
Huang, A.L.1
Chen, X.2
Hoon, M.A.3
Chandrashekar, J.4
Guo, W.5
Tränkner, D.6
Ryba, N.J.7
Zuker, C.S.8
-
18
-
-
33747621396
-
Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor
-
Ishimaru, Y., Inada, H., Kubota, M., Zhuang, H., Tominaga, M., and Matsunami, H. (2006). Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl. Acad. Sci. USA 103, 12569-12574.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 12569-12574
-
-
Ishimaru, Y.1
Inada, H.2
Kubota, M.3
Zhuang, H.4
Tominaga, M.5
Matsunami, H.6
-
19
-
-
33645996719
-
Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25
-
Clapp, T.R., Medler, K.F., Damak, S., Margolskee, R.F., and Kinnamon, S.C. (2006). Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biol. 4, 7.
-
(2006)
BMC Biol.
, vol.4
, pp. 7
-
-
Clapp, T.R.1
Medler, K.F.2
Damak, S.3
Margolskee, R.F.4
Kinnamon, S.C.5
-
20
-
-
33646103668
-
Separate populations of receptor cells and presynaptic cells in mouse taste buds
-
DeFazio, R.A., Dvoryanchikov, G., Maruyama, Y., Kim, J.W., Pereira, E., Roper, S.D., and Chaudhari, N. (2006). Separate populations of receptor cells and presynaptic cells in mouse taste buds. J. Neurosci. 26, 3971-3980.
-
(2006)
J. Neurosci.
, vol.26
, pp. 3971-3980
-
-
DeFazio, R.A.1
Dvoryanchikov, G.2
Maruyama, Y.3
Kim, J.W.4
Pereira, E.5
Roper, S.D.6
Chaudhari, N.7
-
21
-
-
45249103556
-
Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste
-
Huang, Y.A., Maruyama, Y., Stimac, R., and Roper, S.D. (2008). Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste. J. Physiol. 586, 2903-2912.
-
(2008)
J. Physiol.
, vol.586
, pp. 2903-2912
-
-
Huang, Y.A.1
Maruyama, Y.2
Stimac, R.3
Roper, S.D.4
-
22
-
-
41049108294
-
The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse
-
Kataoka, S., Yang, R., Ishimaru, Y., Matsunami, H., Sevigny, J., Kinnamon, J.C., and Finger, T.E. (2008). The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse. Chem. Senses 33, 243-254.
-
(2008)
Chem. Senses
, vol.33
, pp. 243-254
-
-
Kataoka, S.1
Yang, R.2
Ishimaru, Y.3
Matsunami, H.4
Sévigny, J.5
Kinnamon, J.C.6
Finger, T.E.7
-
23
-
-
70450191418
-
Discrimination of taste qualities among mouse fungiform taste bud cells
-
Yoshida, R., Miyauchi, A., Yasuo, T., Jyotaki, M., Murata, Y., Yasumatsu, K., Shigemura, N., Yanagawa, Y., Obata, K., Ueno, H., et al. (2009). Discrimination of taste qualities among mouse fungiform taste bud cells. J. Physiol. 587, 4425-4439.
-
(2009)
J. Physiol.
, vol.587
, pp. 4425-4439
-
-
Yoshida, R.1
Miyauchi, A.2
Yasuo, T.3
Jyotaki, M.4
Murata, Y.5
Yasumatsu, K.6
Shigemura, N.7
Yanagawa, Y.8
Obata, K.9
Ueno, H.10
-
24
-
-
77955440581
-
Taste function in mice with a targeted mutation of the pkd1l3 gene
-
Nelson, T.M., Lopezjimenez, N.D., Tessarollo, L., Inoue, M., Bachmanov, A.A., and Sullivan, S.L. (2010). Taste function in mice with a targeted mutation of the pkd1l3 gene. Chem. Senses 35, 565-577.
-
(2010)
Chem. Senses
, vol.35
, pp. 565-577
-
-
Nelson, T.M.1
Lopezjimenez, N.D.2
Tessarollo, L.3
Inoue, M.4
Bachmanov, A.A.5
Sullivan, S.L.6
-
25
-
-
79956262502
-
Sour taste responses in mice lacking PKD channels
-
Horio, N., Yoshida, R., Yasumatsu, K., Yanagawa, Y., Ishimaru, Y., Matsunami, H., and Ninomiya, Y. (2011). Sour taste responses in mice lacking PKD channels. PLoS ONE 6, e20007.
-
(2011)
PLoS ONE
, vol.6
, pp. e20007
-
-
Horio, N.1
Yoshida, R.2
Yasumatsu, K.3
Yanagawa, Y.4
Ishimaru, Y.5
Matsunami, H.6
Ninomiya, Y.7
-
26
-
-
0031824938
-
Acid-induced responses in hamster chorda tympani and intracellular pH tracking by taste receptor cells
-
Stewart, R.E., Lyall, V., Feldman, G.M., Heck, G.L., and DeSimone, J.A. (1998). Acid-induced responses in hamster chorda tympani and intracellular pH tracking by taste receptor cells. Am. J. Physiol. 275, C227-C238.
-
(1998)
Am. J. Physiol.
, vol.275
, pp. C227-C238
-
-
Stewart, R.E.1
Lyall, V.2
Feldman, G.M.3
Heck, G.L.4
DeSimone, J.A.5
-
27
-
-
0034830227
-
Decrease in rat taste receptor cell intracellular pH is the proximate stimulus in sour taste transduction
-
Lyall, V., Alam, R.I., Phan, D.Q., Ereso, G.L., Phan, T.H., Malik, S.A., Montrose, M.H., Chu, S., Heck, G.L., Feldman, G.M., and DeSimone, J.A. (2001). Decrease in rat taste receptor cell intracellular pH is the proximate stimulus in sour taste transduction. Am. J. Physiol. Cell Physiol. 281, C1005-C1013.
-
(2001)
Am. J. Physiol. Cell Physiol.
, vol.281
, pp. C1005-C1013
-
-
Lyall, V.1
Alam, R.I.2
Phan, D.Q.3
Ereso, G.L.4
Phan, T.H.5
Malik, S.A.6
Montrose, M.H.7
Chu, S.8
Heck, G.L.9
Feldman, G.M.10
DeSimone, J.A.11
-
28
-
-
0037338441
-
Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells
-
Richter, T.A., Caicedo, A., and Roper, S.D. (2003). Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells. J. Physiol. 547, 475-483.
-
(2003)
J. Physiol.
, vol.547
, pp. 475-483
-
-
Richter, T.A.1
Caicedo, A.2
Roper, S.D.3
-
29
-
-
14844315089
-
Taste receptor cells express pH-sensitive leak K+ channels
-
Lin, W., Burks, C.A., Hansen, D.R., Kinnamon, S.C., and Gilbertson, T.A. (2004). Taste receptor cells express pH-sensitive leak K+ channels. J. Neurophysiol. 92, 2909-2919.
-
(2004)
J. Neurophysiol.
, vol.92
, pp. 2909-2919
-
-
Lin, W.1
Burks, C.A.2
Hansen, D.R.3
Kinnamon, S.C.4
Gilbertson, T.A.5
-
30
-
-
0023688830
-
Apical localization of K+ channels in taste cells provides the basis for sour taste transduction
-
Kinnamon, S.C., Dionne, V.E., and Beam, K.G. (1988). Apical localization of K+ channels in taste cells provides the basis for sour taste transduction. Proc. Natl. Acad. Sci. USA 85, 7023-7027.
-
(1988)
Proc. Natl. Acad. Sci. USA
, vol.85
, pp. 7023-7027
-
-
Kinnamon, S.C.1
Dionne, V.E.2
Beam, K.G.3
-
31
-
-
84954348494
-
The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction
-
Ye, W., Chang, R.B., Bushman, J.D., Tu, Y.H., Mulhall, E.M., Wilson, C.E., Cooper, A.J., Chick, W.S., Hill-Eubanks, D.C., Nelson, M.T., et al. (2016). The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction. Proc. Natl. Acad. Sci. USA 113, E229-E238.
-
(2016)
Proc. Natl. Acad. Sci. USA
, vol.113
, pp. E229-E238
-
-
Ye, W.1
Chang, R.B.2
Bushman, J.D.3
Tu, Y.H.4
Mulhall, E.M.5
Wilson, C.E.6
Cooper, A.J.7
Chick, W.S.8
Hill-Eubanks, D.C.9
Nelson, M.T.10
-
32
-
-
0035191109
-
Acid detection by taste receptor cells
-
DeSimone, J.A., Lyall, V., Heck, G.L., and Feldman, G.M. (2001). Acid detection by taste receptor cells. Respir. Physiol. 129, 231-245.
-
(2001)
Respir. Physiol.
, vol.129
, pp. 231-245
-
-
DeSimone, J.A.1
Lyall, V.2
Heck, G.L.3
Feldman, G.M.4
-
33
-
-
78650636945
-
A proton current drives action potentials in genetically identified sour taste cells
-
Chang, R.B., Waters, H., and Liman, E.R. (2010). A proton current drives action potentials in genetically identified sour taste cells. Proc. Natl. Acad. Sci. USA 107, 22320-22325.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 22320-22325
-
-
Chang, R.B.1
Waters, H.2
Liman, E.R.3
-
34
-
-
85041207454
-
An evolutionarily conserved gene family encodes proton-selective ion channels
-
Tu, Y.H., Cooper, A.J., Teng, B., Chang, R.B., Artiga, D.J., Turner, H.N., Mulhall, E.M., Ye, W., Smith, A.D., and Liman, E.R. (2018). An evolutionarily conserved gene family encodes proton-selective ion channels. Science 359, 1047-1050.
-
(2018)
Science
, vol.359
, pp. 1047-1050
-
-
Tu, Y.H.1
Cooper, A.J.2
Teng, B.3
Chang, R.B.4
Artiga, D.J.5
Turner, H.N.6
Mulhall, E.M.7
Ye, W.8
Smith, A.D.9
Liman, E.R.10
-
35
-
-
84940426552
-
A proton current associated with sour taste: distribution and functional properties
-
Bushman, J.D., Ye, W., and Liman, E.R. (2015). A proton current associated with sour taste: distribution and functional properties. FASEB J. 29, 3014-3026.
-
(2015)
FASEB J.
, vol.29
, pp. 3014-3026
-
-
Bushman, J.D.1
Ye, W.2
Liman, E.R.3
-
36
-
-
79951852316
-
Missense mutations in Otopetrin 1 affect subcellular localization and inhibition of purinergic signaling in vestibular supporting cells
-
Kim, E., Hyrc, K.L., Speck, J., Salles, F.T., Lundberg, Y.W., Goldberg, M.P., Kachar, B., Warchol, M.E., and Ornitz, D.M. (2011). Missense mutations in Otopetrin 1 affect subcellular localization and inhibition of purinergic signaling in vestibular supporting cells. Mol. Cell. Neurosci. 46, 655-661.
-
(2011)
Mol. Cell. Neurosci.
, vol.46
, pp. 655-661
-
-
Kim, E.1
Hyrc, K.L.2
Speck, J.3
Salles, F.T.4
Lundberg, Y.W.5
Goldberg, M.P.6
Kachar, B.7
Warchol, M.E.8
Ornitz, D.M.9
-
37
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
38
-
-
84950126700
-
Genome engineering using CRISPR-Cas9 system
-
Cong, L., and Zhang, F. (2015). Genome engineering using CRISPR-Cas9 system. Methods Mol. Biol. 1239, 197-217.
-
(2015)
Methods Mol. Biol.
, vol.1239
, pp. 197-217
-
-
Cong, L.1
Zhang, F.2
-
39
-
-
0032146930
-
Otoconial agenesis in tilted mutant mice
-
Ornitz, D.M., Bohne, B.A., Thalmann, I., Harding, G.W., and Thalmann, R. (1998). Otoconial agenesis in tilted mutant mice. Hear. Res. 122, 60-70.
-
(1998)
Hear. Res.
, vol.122
, pp. 60-70
-
-
Ornitz, D.M.1
Bohne, B.A.2
Thalmann, I.3
Harding, G.W.4
Thalmann, R.5
-
40
-
-
85034956884
-
Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice
-
Wilson, C.E., Finger, T.E., and Kinnamon, S.C. (2017). Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice. Chem. Senses 42, 759-767.
-
(2017)
Chem. Senses
, vol.42
, pp. 759-767
-
-
Wilson, C.E.1
Finger, T.E.2
Kinnamon, S.C.3
-
41
-
-
79958076038
-
A TRPA1-dependent mechanism for the pungent sensation of weak acids
-
Wang, Y.Y., Chang, R.B., Allgood, S.D., Silver, W.L., and Liman, E.R. (2011). A TRPA1-dependent mechanism for the pungent sensation of weak acids. J. Gen. Physiol. 137, 493-505.
-
(2011)
J. Gen. Physiol.
, vol.137
, pp. 493-505
-
-
Wang, Y.Y.1
Chang, R.B.2
Allgood, S.D.3
Silver, W.L.4
Liman, E.R.5
-
42
-
-
28544448048
-
ATP signaling is crucial for communication from taste buds to gustatory nerves
-
Finger, T.E., Danilova, V., Barrows, J., Bartel, D.L., Vigers, A.J., Stone, L., Hellekant, G., and Kinnamon, S.C. (2005). ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310, 1495-1499.
-
(2005)
Science
, vol.310
, pp. 1495-1499
-
-
Finger, T.E.1
Danilova, V.2
Barrows, J.3
Bartel, D.L.4
Vigers, A.J.5
Stone, L.6
Hellekant, G.7
Kinnamon, S.C.8
-
43
-
-
85021397703
-
The cellular mechanism for water detection in the mammalian taste system
-
Zocchi, D., Wennemuth, G., and Oka, Y. (2017). The cellular mechanism for water detection in the mammalian taste system. Nat. Neurosci. 20, 927-933.
-
(2017)
Nat. Neurosci.
, vol.20
, pp. 927-933
-
-
Zocchi, D.1
Wennemuth, G.2
Oka, Y.3
-
44
-
-
0029921804
-
Ethanol consumption and taste preferences in C57BL/6ByJ and 129/J mice
-
Bachmanov, A.A., Tordoff, M.G., and Beauchamp, G.K. (1996). Ethanol consumption and taste preferences in C57BL/6ByJ and 129/J mice. Alcohol. Clin. Exp. Res. 20, 201-206.
-
(1996)
Alcohol. Clin. Exp. Res.
, vol.20
, pp. 201-206
-
-
Bachmanov, A.A.1
Tordoff, M.G.2
Beauchamp, G.K.3
-
45
-
-
0041945527
-
The relation between the total acidity, the concentration of the hydrogen ion, and the taste of acid solutions
-
Harvey, R.B. (1920). The relation between the total acidity, the concentration of the hydrogen ion, and the taste of acid solutions. J. Am. Chem. Soc. 42, 712-714.
-
(1920)
J. Am. Chem. Soc.
, vol.42
, pp. 712-714
-
-
Harvey, R.B.1
-
46
-
-
34250809680
-
Signal transduction and information processing in mammalian taste buds
-
Roper, S.D. (2007). Signal transduction and information processing in mammalian taste buds. Pflugers Arch. 454, 759-776.
-
(2007)
Pflugers Arch.
, vol.454
, pp. 759-776
-
-
Roper, S.D.1
-
47
-
-
46449097549
-
Off-response property of an acid-activated cation channel complex PKD1L3-PKD2L1
-
Inada, H., Kawabata, F., Ishimaru, Y., Fushiki, T., Matsunami, H., and Tominaga, M. (2008). Off-response property of an acid-activated cation channel complex PKD1L3-PKD2L1. EMBO Rep. 9, 690-697.
-
(2008)
EMBO Rep.
, vol.9
, pp. 690-697
-
-
Inada, H.1
Kawabata, F.2
Ishimaru, Y.3
Fushiki, T.4
Matsunami, H.5
Tominaga, M.6
-
48
-
-
77952900954
-
Activation of polycystic kidney disease-2-like 1 (PKD2L1)-PKD1L3 complex by acid in mouse taste cells
-
Kawaguchi, H., Yamanaka, A., Uchida, K., Shibasaki, K., Sokabe, T., Maruyama, Y., Yanagawa, Y., Murakami, S., and Tominaga, M. (2010). Activation of polycystic kidney disease-2-like 1 (PKD2L1)-PKD1L3 complex by acid in mouse taste cells. J. Biol. Chem. 285, 17277-17281.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 17277-17281
-
-
Kawaguchi, H.1
Yamanaka, A.2
Uchida, K.3
Shibasaki, K.4
Sokabe, T.5
Maruyama, Y.6
Yanagawa, Y.7
Murakami, S.8
Tominaga, M.9
-
49
-
-
70349916098
-
Acid-sensitive ion channels and receptors
-
Holzer, P. (2009). Acid-sensitive ion channels and receptors. Handb. Exp. Pharmacol. 194, 283-332.
-
(2009)
Handb. Exp. Pharmacol.
, vol.194
, pp. 283-332
-
-
Holzer, P.1
-
50
-
-
4143072579
-
Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds
-
Richter, T.A., Dvoryanchikov, G.A., Chaudhari, N., and Roper, S.D. (2004). Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds. J. Neurophysiol. 92, 1928-1936.
-
(2004)
J. Neurophysiol.
, vol.92
, pp. 1928-1936
-
-
Richter, T.A.1
Dvoryanchikov, G.A.2
Chaudhari, N.3
Roper, S.D.4
-
51
-
-
84942011681
-
Breadth of tuning in taste afferent neurons varies with stimulus strength
-
Wu, A., Dvoryanchikov, G., Pereira, E., Chaudhari, N., and Roper, S.D. (2015). Breadth of tuning in taste afferent neurons varies with stimulus strength. Nat. Commun. 6, 8171.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8171
-
-
Wu, A.1
Dvoryanchikov, G.2
Pereira, E.3
Chaudhari, N.4
Roper, S.D.5
-
52
-
-
85064886514
-
Recognizing Taste: Coding Patterns Along the Neural Axis in Mammals
-
Ohla, K., Yoshida, R., Roper, S.D., Di Lorenzo, P.M., Victor, J.D., Boughter, J.D., Fletcher, M., Katz, D.B., and Chaudhari, N. (2019). Recognizing Taste: Coding Patterns Along the Neural Axis in Mammals. Chem. Senses 44, 237-247.
-
(2019)
Chem. Senses
, vol.44
, pp. 237-247
-
-
Ohla, K.1
Yoshida, R.2
Roper, S.D.3
Di Lorenzo, P.M.4
Victor, J.D.5
Boughter, J.D.6
Fletcher, M.7
Katz, D.B.8
Chaudhari, N.9
-
53
-
-
84879682664
-
Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster
-
Charlu, S., Wisotsky, Z., Medina, A., and Dahanukar, A. (2013). Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster. Nat. Commun. 4, 2042.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2042
-
-
Charlu, S.1
Wisotsky, Z.2
Medina, A.3
Dahanukar, A.4
-
54
-
-
85029883677
-
Ionotropic Receptors Mediate Drosophila Oviposition Preference through Sour Gustatory Receptor Neurons
-
Chen, Y., and Amrein, H. (2017). Ionotropic Receptors Mediate Drosophila Oviposition Preference through Sour Gustatory Receptor Neurons. Curr Biol 27, 2741-2750.e4.
-
(2017)
Curr Biol
, vol.27
, pp. 2741-2750.e4
-
-
Chen, Y.1
Amrein, H.2
-
55
-
-
85040909336
-
Molecular basis of fatty acid taste in Drosophila
-
Ahn, J.E., Chen, Y., and Amrein, H. (2017). Molecular basis of fatty acid taste in Drosophila. eLife 6, e30115.
-
(2017)
eLife
, vol.6
, pp. e30115
-
-
Ahn, J.E.1
Chen, Y.2
Amrein, H.3
-
56
-
-
85060334190
-
Mechanism of Acetic Acid Gustatory Repulsion in Drosophila
-
Rimal, S., Sang, J., Poudel, S., Thakur, D., Montell, C., and Lee, Y. (2019). Mechanism of Acetic Acid Gustatory Repulsion in Drosophila. Cell Rep 26, 1432-1442.4.
-
(2019)
Cell Rep
, vol.26
, pp. 1432-1442.4
-
-
Rimal, S.1
Sang, J.2
Poudel, S.3
Thakur, D.4
Montell, C.5
Lee, Y.6
-
57
-
-
85066951351
-
Structures of the otopetrin proton channels Otop1 and Otop3
-
Saotome, K., Teng, B., Tsui, C.C.A., Lee, W.H., Tu, Y.H., Kaplan, J.P., Sansom, M.S.P., Liman, E.R., and Ward, A.B. (2019). Structures of the otopetrin proton channels Otop1 and Otop3. Nat. Struct. Mol. Biol. 26, 518-525.
-
(2019)
Nat. Struct. Mol. Biol.
, vol.26
, pp. 518-525
-
-
Saotome, K.1
Teng, B.2
Tsui, C.C.A.3
Lee, W.H.4
Tu, Y.H.5
Kaplan, J.P.6
Sansom, M.S.P.7
Liman, E.R.8
Ward, A.B.9
-
58
-
-
0026485457
-
Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs
-
Liman, E.R., Tytgat, J., and Hess, P. (1992). Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9, 861-871.
-
(1992)
Neuron
, vol.9
, pp. 861-871
-
-
Liman, E.R.1
Tytgat, J.2
Hess, P.3
-
59
-
-
84901916201
-
The calcium-activated chloride channel Anoctamin 1 contributes to the regulation of renal function
-
Faria, D., Rock, J.R., Romao, A.M., Schweda, F., Bandulik, S., Witzgall, R., Schlatter, E., Heitzmann, D., Pavenstadt, H., Herrmann, E., et al. (2014). The calcium-activated chloride channel Anoctamin 1 contributes to the regulation of renal function. Kidney Int. 85, 1369-1381.
-
(2014)
Kidney Int.
, vol.85
, pp. 1369-1381
-
-
Faria, D.1
Rock, J.R.2
Romao, A.M.3
Schweda, F.4
Bandulik, S.5
Witzgall, R.6
Schlatter, E.7
Heitzmann, D.8
Pavenstädt, H.9
Herrmann, E.10
-
60
-
-
84949424293
-
The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves
-
Larson, E.D., Vandenbeuch, A., Voigt, A., Meyerhof, W., Kinnamon, S.C., and Finger, T.E. (2015). The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves. J. Neurosci. 35, 15984-15995.
-
(2015)
J. Neurosci.
, vol.35
, pp. 15984-15995
-
-
Larson, E.D.1
Vandenbeuch, A.2
Voigt, A.3
Meyerhof, W.4
Kinnamon, S.C.5
Finger, T.E.6
-
61
-
-
0036851840
-
Food intake, water intake, and drinking spout side preference of 28 mouse strains
-
Bachmanov, A.A., Reed, D.R., Beauchamp, G.K., and Tordoff, M.G. (2002). Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav. Genet. 32, 435-443.
-
(2002)
Behav. Genet.
, vol.32
, pp. 435-443
-
-
Bachmanov, A.A.1
Reed, D.R.2
Beauchamp, G.K.3
Tordoff, M.G.4
|