-
1
-
-
85017360311
-
Scaling single-cell genomics from phenomenology to mechanism
-
Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 21350 (2017).
-
(2017)
Nature
, vol.541
, pp. 21350
-
-
Tanay, A.1
Regev, A.2
-
2
-
-
84922629832
-
Quantitative single-cell approaches to stem cell research
-
COI: 1:CAS:528:DC%2BC2cXhvVCktbjP, PID: 25517464
-
Etzrodt, M., Endele, M. & Schroeder, T. Quantitative single-cell approaches to stem cell research. Cell Stem Cell 15, 546–558 (2014).
-
(2014)
Cell Stem Cell
, vol.15
, pp. 546-558
-
-
Etzrodt, M.1
Endele, M.2
Schroeder, T.3
-
3
-
-
84942940566
-
Defining cell types and states with single-cell genomics
-
COI: 1:CAS:528:DC%2BC2MXhs1Oitb%2FK, PID: 26430159
-
Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res. 25, 1491–1498 (2015).
-
(2015)
Genome Res.
, vol.25
, pp. 1491-1498
-
-
Trapnell, C.1
-
4
-
-
84991571425
-
Computational methods for trajectory inference from single-cell transcriptomics
-
COI: 1:CAS:528:DC%2BC28Xhs1yrsLfK, PID: 27682842
-
Cannoodt, R., Saelens, W. & Saeys, Y. Computational methods for trajectory inference from single-cell transcriptomics. Eur. J. Immunol. 46, 2496–2506 (2016).
-
(2016)
Eur. J. Immunol.
, vol.46
, pp. 2496-2506
-
-
Cannoodt, R.1
Saelens, W.2
Saeys, Y.3
-
5
-
-
85045320368
-
Manifold learning-based methods for analyzing single-cell RNA-sequencing data
-
Moon, K. R. et al. Manifold learning-based methods for analyzing single-cell RNA-sequencing data.Curr. Opin. Syst. Biol. 7, 36–46 (2018).
-
(2018)
Curr. Opin. Syst. Biol.
, vol.7
, pp. 36-46
-
-
Moon, K.R.1
-
6
-
-
85021092677
-
Reconstructing cell cycle pseudo time-series via single-cell transcriptome data
-
PID: 28630425
-
Liu, Z. et al. Reconstructing cell cycle pseudo time-series via single-cell transcriptome data. Nat. Commun. 8, 22 (2017).
-
(2017)
Nat. Commun.
, vol.8
-
-
Liu, Z.1
-
7
-
-
85063153038
-
PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells
-
PID: 30890159
-
Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).
-
(2019)
Genome Biol.
, vol.20
, pp. 59
-
-
Wolf, F.A.1
-
8
-
-
84931394611
-
Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow
-
COI: 1:CAS:528:DC%2BC2MXhtFSktLjN, PID: 26054720
-
Schlitzer, A. et al. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16, 718–728 (2015).
-
(2015)
Nat. Immunol.
, vol.16
, pp. 718-728
-
-
Schlitzer, A.1
-
9
-
-
85015695567
-
Human haematopoietic stem cell lineage commitment is a continuous process
-
COI: 1:CAS:528:DC%2BC2sXltVWnsr0%3D, PID: 28319093
-
Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).
-
(2017)
Nat. Cell Biol.
, vol.19
, pp. 271-281
-
-
Velten, L.1
-
10
-
-
85027934223
-
Mapping the human DC lineage through the integration of high-dimensional techniques
-
PID: 28473638
-
See, P. et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356, eaag3009 (2017).
-
(2017)
Science
, vol.356
, pp. eaag3009
-
-
See, P.1
-
11
-
-
85032583384
-
SCENIC: Single-cell regulatory network inference and clustering
-
COI: 1:CAS:528:DC%2BC2sXhs1aitL7P, PID: 28991892
-
Aibar, S. et al. SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 1083-1086
-
-
Aibar, S.1
-
12
-
-
85040459896
-
Science forum: the human cell atlas
-
PID: 29206104
-
Regev, A. et al. Science forum: the human cell atlas. eLife 6, e27041 (2017).
-
(2017)
eLife
, vol.6
-
-
Regev, A.1
-
13
-
-
85042366842
-
Mapping the mouse cell atlas by microwell-seq
-
COI: 1:CAS:528:DC%2BC1cXjt12ltr4%3D, PID: 29474909
-
Han, X. et al. Mapping the mouse cell atlas by microwell-seq. Cell 172, 1091–1107.e17 (2018).
-
(2018)
Cell
, vol.172
, pp. 1091-1107.e17
-
-
Han, X.1
-
14
-
-
85055080981
-
Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
-
Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).
-
(2018)
Nature
, vol.562
, pp. 367-372
-
-
Schaum, N.1
-
15
-
-
85041430720
-
Single cells make big data: new challenges and opportunities in transcriptomics
-
Angerer, P. et al. Single cells make big data: new challenges and opportunities in transcriptomics. Curr. Opin. Syst. Biol. 4, 85–91 (2017).
-
(2017)
Curr. Opin. Syst. Biol.
, vol.4
, pp. 85-91
-
-
Angerer, P.1
-
16
-
-
84924455247
-
OMICtools: An informative directory for multi-omic data analysis
-
Oxford
-
Henry, V. J., Bandrowski, A. E., Pepin, A.-S., Gonzalez, B. J. & Desfeux, A. OMICtools: an informative directory for multi-omic data analysis. Database (Oxford) 2014, bau069 (2014).
-
(2014)
Database
, vol.2014
-
-
Henry, V.J.1
Bandrowski, A.E.2
Pepin, A.-S.3
Gonzalez, B.J.4
Desfeux, A.5
-
18
-
-
85049372156
-
Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database
-
&
-
Zappia, L., Phipson, B. & Oshlack, A. Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database. PLoS Comput. Biol. 14, e1006245 (2018)
-
(2018)
PLoS Comput. Biol.
, vol.14
-
-
Zappia, L.1
Phipson, B.2
Oshlack, A.3
-
19
-
-
84899574465
-
Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
-
COI: 1:CAS:528:DC%2BC2cXntFGgsr8%3D, PID: 24766814
-
Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714–725 (2014).
-
(2014)
Cell
, vol.157
, pp. 714-725
-
-
Bendall, S.C.1
-
20
-
-
84941010341
-
Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis
-
COI: 1:CAS:528:DC%2BC2MXhtlOmtbjP, PID: 26299571
-
Shin, J. et al. Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360–372 (2015).
-
(2015)
Cell Stem Cell
, vol.17
, pp. 360-372
-
-
Shin, J.1
-
22
-
-
84984643819
-
Diffusion pseudotime robustly reconstructs lineage branching
-
COI: 1:CAS:528:DC%2BC28XhsVWrs7zI, PID: 27571553
-
Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).
-
(2016)
Nat. Methods
, vol.13
, pp. 845-848
-
-
Haghverdi, L.1
Büttner, M.2
Wolf, F.A.3
Buettner, F.4
Theis, F.J.5
-
23
-
-
84974587998
-
Wishbone identifies bifurcating developmental trajectories from single-cell data
-
COI: 1:CAS:528:DC%2BC28XmvFOqsrs%3D, PID: 27136076
-
Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34, 637–645 (2016).
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 637-645
-
-
Setty, M.1
-
24
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 2859 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 2859
-
-
Trapnell, C.1
-
25
-
-
84975764298
-
SCOUP: a probabilistic model based on the Ornstein–Uhlenbeck process to analyze single-cell expression data during differentiation
-
PID: 27277014
-
Matsumoto, H. & Kiryu, H. SCOUP: a probabilistic model based on the Ornstein–Uhlenbeck process to analyze single-cell expression data during differentiation. BMC Bioinformatics 17, 232 (2016).
-
(2016)
BMC Bioinformatics
, vol.17
-
-
Matsumoto, H.1
Kiryu, H.2
-
26
-
-
85031017685
-
Reversed graph embedding resolves complex single-cell trajectories
-
COI: 1:CAS:528:DC%2BC2sXhtlKjtbbK, PID: 28825705
-
Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 979-982
-
-
Qiu, X.1
-
27
-
-
85048725973
-
Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics
-
PID: 29914354
-
Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).
-
(2018)
BMC Genomics
, vol.19
-
-
Street, K.1
-
28
-
-
84982806105
-
TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
-
PID: 27179027
-
Ji, Z. & Ji, H. TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 44, e117–e117 (2016).
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. e117
-
-
Ji, Z.1
Ji, H.2
-
29
-
-
84969505817
-
SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data
-
PID: 27215581
-
Welch, J. D., Hartemink, A. J. & Prins, J. F. SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data. Genome. Biol. 17, 106 (2016).
-
(2016)
Genome. Biol.
, vol.17
-
-
Welch, J.D.1
Hartemink, A.J.2
Prins, J.F.3
-
30
-
-
84987652887
-
CellTree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data
-
PID: 27620863
-
duVerle, D. A., Yotsukura, S., Nomura, S., Aburatani, H. & Tsuda, K. CellTree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data. BMC Bioinformatics 17, 363 (2016).
-
(2016)
BMC Bioinformatics
, vol.17
-
-
duVerle, D.A.1
Yotsukura, S.2
Nomura, S.3
Aburatani, H.4
Tsuda, K.5
-
32
-
-
85040750667
-
Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves TH1/TFH fate bifurcation in malaria
-
PID: 28345074
-
Lönnberg, T. et al. Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves TH1/TFH fate bifurcation in malaria. Sci. Immunol. 2, eaal2192 (2017).
-
(2017)
Sci. Immunol.
, vol.2
, pp. eaal2192
-
-
Lönnberg, T.1
-
33
-
-
85039160886
-
Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers
-
PID: 28503665
-
Campbell, K. R. & Yau, C. Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers. Wellcome Open Res. 2, 19 (2017).
-
(2017)
Wellcome Open Res.
, vol.2
, pp. 19
-
-
Campbell, K.R.1
Yau, C.2
-
35
-
-
79961200389
-
GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods
-
COI: 1:CAS:528:DC%2BC3MXhtVSiurjO
-
Schaffter, T., Marbach, D. & Floreano, D. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27, 2263–2270 (2011).
-
(2011)
Bioinformatics
, vol.27
, pp. 2263-2270
-
-
Schaffter, T.1
Marbach, D.2
Floreano, D.3
-
36
-
-
85029212828
-
Splatter: simulation of single-cell RNA sequencing data
-
PID: 28899397
-
Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing data. Genome. Biol. 18, 174 (2017).
-
(2017)
Genome. Biol.
, vol.18
-
-
Zappia, L.1
Phipson, B.2
Oshlack, A.3
-
37
-
-
85044252958
-
Exponential scaling of single-cell RNA-seq in the past decade
-
COI: 1:CAS:528:DC%2BC1cXjs1agu74%3D, PID: 29494575
-
Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599–604 (2018).
-
(2018)
Nat. Protoc.
, vol.13
, pp. 599-604
-
-
Svensson, V.1
Vento-Tormo, R.2
Teichmann, S.A.3
-
38
-
-
85054154765
-
Joint profiling of chromatin accessibility and gene expression in thousands of single cells
-
COI: 1:CAS:528:DC%2BC1cXhslOrur3I, PID: 30166440
-
Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).
-
(2018)
Science
, vol.361
, Issue.6409
, pp. 1380-1385
-
-
Cao, J.1
Cusanovich, D.A.2
Ramani, V.3
Aghamirzaie, D.4
Pliner, H.A.5
Hill, A.J.6
Daza, R.M.7
McFaline-Figueroa, J.L.8
Packer, J.S.9
Christiansen, L.10
Steemers, F.J.11
Adey, A.C.12
Trapnell, C.13
Shendure, J.14
-
39
-
-
84894277295
-
Shape constrained additive models
-
Pya, N. & Wood, S. N. Shape constrained additive models. Stat. Comput. 25, 543–559 (2015).
-
(2015)
Stat. Comput.
, vol.25
, pp. 543-559
-
-
Pya, N.1
Wood, S.N.2
-
40
-
-
85018304908
-
Ten simple rules for making research software more robust
-
&
-
Taschuk, M. & Wilson, G. Ten simple rules for making research software more robust. PLoS Comput. Biol. 13, e1005412 (2017).
-
(2017)
PLoS Comput. Biol.
, vol.13
-
-
Taschuk, M.1
Wilson, G.2
-
42
-
-
84893773697
-
Best practices for scientific computing
-
PID: 24415924
-
Wilson, G. et al. Best practices for scientific computing. PLoS Biol. 12, e1001745 (2014).
-
(2014)
PLoS Biol.
, vol.12
-
-
Wilson, G.1
-
43
-
-
85010840297
-
Top 10 metrics for life science software good practices
-
Artaza, H. et al. Top 10 metrics for life science software good practices. F1000Res. 5, 2000 (2016).
-
(2016)
F1000Res.
, vol.5
, pp. 2000
-
-
Artaza, H.1
-
44
-
-
85044288670
-
A comprehensive evaluation of module detection methods for gene expression data
-
PID: 29545622
-
Saelens, W., Cannoodt, R. & Saeys, Y. A comprehensive evaluation of module detection methods for gene expression data. Nat. Commun. 9, 1090 (2018).
-
(2018)
Nat. Commun.
, vol.9
-
-
Saelens, W.1
Cannoodt, R.2
Saeys, Y.3
-
45
-
-
85052109231
-
RNA velocity of single cells
-
PID: 30089906
-
Manno, G. L. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
-
(2018)
Nature
, vol.560
, pp. 494-498
-
-
Manno, G.L.1
-
46
-
-
80054088224
-
The self-assessment trap: Can we all be better than average?
-
PID: 21988833
-
Norel, R., Rice, J. J. & Stolovitzky, G. The self-assessment trap: Can we all be better than average? Mol. Syst. Biol. 7, 537 (2011).
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 537
-
-
Norel, R.1
Rice, J.J.2
Stolovitzky, G.3
-
48
-
-
84886017663
-
Temporal dynamics and transcriptional control using single-cell gene expression analysis
-
PID: 24156252
-
Kouno, T. et al. Temporal dynamics and transcriptional control using single-cell gene expression analysis. Genome. Biol. 14, R118 (2013).
-
(2013)
Genome. Biol.
, vol.14
-
-
Kouno, T.1
-
49
-
-
85019003373
-
Pseudotemporal Ordering of Single Cells Reveals Metabolic Control of Postnatal β Cell Proliferation
-
PID: 28467932
-
Zeng, C. et al. Pseudotemporal ordering of single cells reveals metabolic control of postnatal β cell proliferation. Cell. Metab. 25, 1160–1175.e11 (2017).
-
(2017)
Cell Metabolism
, vol.25
, Issue.5
-
-
Zeng, C.1
Mulas, F.2
Sui, Y.3
Guan, T.4
Miller, N.5
Tan, Y.6
Liu, F.7
Jin, W.8
Carrano, A.C.9
Huising, M.O.10
Shirihai, O.S.11
Yeo, G.W.12
Sander, M.13
-
50
-
-
85065217201
-
PROSSTT: Probabilistic simulation of single-cell RNA-seq data for complex differentiation processes
-
Papadopoulos, N., Parra, R. G. & Soeding, J. PROSSTT: probabilistic simulation of single-cell RNA-seq data for complex differentiation processes. Bioinformatics, btz078 (2019).
-
(2019)
Bioinformatics
-
-
Papadopoulos, N.1
Parra, R.G.2
Soeding, J.3
-
51
-
-
85010931059
-
A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor
-
PID: 27909575
-
Lun, A. T., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 5, 2122 (2016).
-
(2016)
F1000Res.
, vol.5
, pp. 2122
-
-
Lun, A.T.1
McCarthy, D.J.2
Marioni, J.C.3
-
52
-
-
84962828488
-
-
IEEE
-
Jurman, G., Visintainer, R., Filosi, M., Riccadonna, S. & Furlanello, C. in Proc. 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) 1–10 (IEEE, 2015); 10.1109/DSAA.2015.7344816
-
(2015)
Proc. 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA)
, pp. 1-10
-
-
Jurman, G.1
Visintainer, R.2
Filosi, M.3
Riccadonna, S.4
Furlanello, C.5
-
53
-
-
85016782791
-
Ranger: A fast implementation of random forests for high dimensional data in C++ and R
-
Wright, M. N. & Ziegler, A. Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1-17 (2017).
-
(2017)
J. Stat. Softw.
, vol.77
, pp. 1-17
-
-
Wright, M.N.1
Ziegler, A.2
-
54
-
-
85017331188
-
Reproducibility of computational workflows is automated using continuous analysis
-
Beaulieu-Jones, B. K. & Greene, C. S. Reproducibility of computational workflows is automated using continuous analysis. Nat. Biotechnol. 35, 3780 (2017).
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 3780
-
-
Beaulieu-Jones, B.K.1
Greene, C.S.2
-
55
-
-
85065219905
-
-
Zenodo
-
Cannoodt, R., Saelens, W., Todorov, H. & Saeys, Y. Single-cell -omics datasets containing a trajectory (Version 2.0.0). Zenodo https://doi.org/10.5281/zenodo.1443566 (2018).
-
(2018)
Single-Cell -Omics Datasets Containing a Trajectory (Version 2.0.0)
-
-
Cannoodt, R.1
Saelens, W.2
Todorov, H.3
Saeys, Y.4
|