-
1
-
-
34147153781
-
Dysregulation of cardiogenesis, cardiac conduction, cell cyclein mice lacking miRNA-1-2
-
Zhao, Y., et al. Dysregulation of cardiogenesis, cardiac conduction, cell cyclein mice lacking miRNA-1-2. Cell 129, 303-317 (2007).
-
(2007)
Cell
, vol.129
, pp. 303-317
-
-
Zhao, Y.1
-
2
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genesof the yeast Saccharomyces cerevisiae by microarray hybridization
-
Spellman, P. T., et al. Comprehensive identification of cell cycle-regulated genesof the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol.Cell 9, 3273-3297 (1998).
-
(1998)
Mol. Biol.Cell
, vol.9
, pp. 3273-3297
-
-
Spellman, P.T.1
-
3
-
-
84898761557
-
A proteomic chronology of gene expression through the cell cycle inhuman myeloid leukemia cells
-
Ly, T., et al. A proteomic chronology of gene expression through the cell cycle inhuman myeloid leukemia cells. Elife 3, e01630 (2014).
-
(2014)
Elife
, vol.3
, pp. e01630
-
-
Ly, T.1
-
4
-
-
84893910301
-
Quantitative assessment of single-cell RNA-sequencingmethods
-
Wu, A. R., et al. Quantitative assessment of single-cell RNA-sequencingmethods. Nat. Methods 11, 41-46 (2014).
-
(2014)
Nat. Methods
, vol.11
, pp. 41-46
-
-
Wu, A.R.1
-
5
-
-
67349146589
-
mRNA-Seq whole-transcriptome analysis of a single cell
-
Tang, F., et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat.Methods 6, 377-382 (2009).
-
(2009)
Nat.Methods
, vol.6
, pp. 377-382
-
-
Tang, F.1
-
6
-
-
84929687805
-
The technology and biology of single-cell RNA sequencing
-
Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C., Teichmann, S. A.The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610-620 (2015).
-
(2015)
Mol. Cell
, vol.58
, pp. 610-620
-
-
Kolodziejczyk, A.A.1
Kim, J.K.2
Svensson, V.3
Marioni, J.C.4
Teichmann, S.A.5
-
7
-
-
84903185013
-
Single-cell RNA-seq reveals dynamic paracrine control ofcellular variation
-
Shalek, A. K., et al. Single-cell RNA-seq reveals dynamic paracrine control ofcellular variation. Nature 510, 363-369 (2014).
-
(2014)
Nature
, vol.510
, pp. 363-369
-
-
Shalek, A.K.1
-
8
-
-
84929151009
-
Spatialreconstruction of single-cell gene expression data
-
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F., Regev, A. Spatialreconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495-502(2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 495-502
-
-
Satija, R.1
Farrell, J.A.2
Gennert, D.3
Schier, A.F.4
Regev, A.5
-
9
-
-
84957569471
-
Electrophysiological, transcriptomic and morphologicprofiling of single neurons using Patch-seq
-
Cadwell, C. R., et al. Electrophysiological, transcriptomic and morphologicprofiling of single neurons using Patch-seq. Nat. Biotechnol. 34, 199-203(2016).
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 199-203
-
-
Cadwell, C.R.1
-
10
-
-
84923647450
-
Computational and analyticalchallenges in single-cell transcriptomics
-
Stegle, O., Teichmann, S. A., Marioni, J. C. Computational and analyticalchallenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133-145 (2015).
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.A.2
Marioni, J.C.3
-
11
-
-
84959122613
-
Oscope identifies oscillatory genes in unsynchronized single-cellRNA-seq experiments
-
Leng, N., et al. Oscope identifies oscillatory genes in unsynchronized single-cellRNA-seq experiments. Nat. Methods 12, 947-950 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 947-950
-
-
Leng, N.1
-
12
-
-
84939772971
-
Computational assignment of cell-cycle stage fromsingle-cell transcriptome data
-
Scialdone, A., et al. Computational assignment of cell-cycle stage fromsingle-cell transcriptome data. Methods 85, 54-61 (2015).
-
(2015)
Methods
, vol.85
, pp. 54-61
-
-
Scialdone, A.1
-
13
-
-
84956599311
-
Single-cell RNA-seq reveals changes in cell cycle anddifferentiation programs upon aging of hematopoietic stem cells
-
Kowalczyk, M. S., et al. Single-cell RNA-seq reveals changes in cell cycle anddifferentiation programs upon aging of hematopoietic stem cells. Genome Res.25, 1860-1872 (2015).
-
(2015)
Genome Res.
, vol.25
, pp. 1860-1872
-
-
Kowalczyk, M.S.1
-
14
-
-
84924365758
-
Bifurcation analysis of single-cell gene expression datareveals epigenetic landscape
-
Marco, E., et al. Bifurcation analysis of single-cell gene expression datareveals epigenetic landscape. Proc. Natl Acad. Sci. USA 111, E5643-E5650(2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. E5643-E5650
-
-
Marco, E.1
-
15
-
-
84900873950
-
The dynamics and regulators of cell fate decisions arerevealed by pseudotemporal ordering of single cells
-
Trapnell, C., et al. The dynamics and regulators of cell fate decisions arerevealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
-
16
-
-
84982806105
-
TSCAN: Pseudo-time reconstruction and evaluation in single-cellRNA-seq analysis
-
Ji, Z., Ji, H. TSCAN: Pseudo-time reconstruction and evaluation in single-cellRNA-seq analysis. Nucleic Acids Res. 44, e117 (2016).
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. e117
-
-
Ji, Z.1
Ji, H.2
-
17
-
-
84899574465
-
Single-cell trajectory detection uncovers progression andregulatory coordination in human B cell development
-
Bendall, S. C., et al. Single-cell trajectory detection uncovers progression andregulatory coordination in human B cell development. Cell 157, 714-725(2014).
-
(2014)
Cell
, vol.157
, pp. 714-725
-
-
Bendall, S.C.1
-
18
-
-
84974587998
-
Wishbone identifies bifurcating developmental trajectories fromsingle-cell data
-
Setty, M., et al. Wishbone identifies bifurcating developmental trajectories fromsingle-cell data. Nat. Biotechnol. 34, 637-645 (2016).
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 637-645
-
-
Setty, M.1
-
19
-
-
84984643819
-
Diffusionpseudotime robustly reconstructs lineage branching
-
Haghverdi, L., Buttner, M., Wolf, F. A., Buettner, F., Theis, F. J. Diffusionpseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845-848(2016).
-
(2016)
Nat. Methods
, vol.13
, pp. 845-848
-
-
Haghverdi, L.1
Buttner, M.2
Wolf, F.A.3
Buettner, F.4
Theis, F.J.5
-
20
-
-
84874346987
-
Dynamics extracted from fixed cells reveal feedback linking cellgrowth to cell cycle
-
Kafri, R., et al. Dynamics extracted from fixed cells reveal feedback linking cellgrowth to cell cycle. Nature 494, 480-483 (2013).
-
(2013)
Nature
, vol.494
, pp. 480-483
-
-
Kafri, R.1
-
21
-
-
84959123422
-
Trajectories ofcell-cycle progression from fixed cell populations
-
Gut, G., Tadmor, M. D., Pe'er, D., Pelkmans, L., Liberali, P. Trajectories ofcell-cycle progression from fixed cell populations. Nat. Methods 12, 951-954(2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 951-954
-
-
Gut, G.1
Tadmor, M.D.2
Pe'Er, D.3
Pelkmans, L.4
Liberali, P.5
-
22
-
-
84923292191
-
Computational analysis of cell-to-cell heterogeneity insingle-cell RNA-sequencing data reveals hidden subpopulations of cells
-
Buettner, F., et al. Computational analysis of cell-to-cell heterogeneity insingle-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat.Biotechnol. 33, 155-160 (2015).
-
(2015)
Nat.Biotechnol.
, vol.33
, pp. 155-160
-
-
Buettner, F.1
-
23
-
-
84876085773
-
Quartz-Seq: A highly reproducible and sensitive single-cellRNA sequencing method, reveals non-genetic gene-expression heterogeneity
-
Sasagawa, Y., et al. Quartz-Seq: A highly reproducible and sensitive single-cellRNA sequencing method, reveals non-genetic gene-expression heterogeneity.Genome Biol. 14, R31 (2013).
-
(2013)
Genome Biol.
, vol.14
, pp. R31
-
-
Sasagawa, Y.1
-
24
-
-
84905457964
-
Modeling Bi-modality improves characterization of cell cycleon gene expression in single cells
-
McDavid, A., et al. Modeling Bi-modality improves characterization of cell cycleon gene expression in single cells. PLoS Comput. Biol. 10, e1003696 (2014).
-
(2014)
PLoS Comput. Biol.
, vol.10
, pp. e1003696
-
-
McDavid, A.1
-
25
-
-
84947748539
-
Single Cell RNA-sequencing of Pluripotent Statesunlocks modular transcriptional variation
-
Kolodziejczyk, A. A., et al. Single Cell RNA-sequencing of Pluripotent Statesunlocks modular transcriptional variation. Cell Stem Cell 17, 471-485 (2015).
-
(2015)
Cell Stem Cell
, vol.17
, pp. 471-485
-
-
Kolodziejczyk, A.A.1
-
26
-
-
84900529199
-
Reconstructing lineage hierarchies of the distal lungepithelium using single-cell RNA-seq
-
Treutlein, B., et al. Reconstructing lineage hierarchies of the distal lungepithelium using single-cell RNA-seq. Nature 509, 371-378 (2014).
-
(2014)
Nature
, vol.509
, pp. 371-378
-
-
Treutlein, B.1
-
27
-
-
84963614956
-
Dissecting the multicellular ecosystem of metastatic melanomaby single-cell RNA-seq
-
Tirosh, I., et al. Dissecting the multicellular ecosystem of metastatic melanomaby single-cell RNA-seq. Science 352, 189-196 (2016).
-
(2016)
Science
, vol.352
, pp. 189-196
-
-
Tirosh, I.1
-
28
-
-
84959255113
-
Parallel single-cell sequencing links transcriptional andepigenetic heterogeneity
-
Angermueller, C., et al. Parallel single-cell sequencing links transcriptional andepigenetic heterogeneity. Nat. Methods 13, 229-232 (2016).
-
(2016)
Nat. Methods
, vol.13
, pp. 229-232
-
-
Angermueller, C.1
-
29
-
-
0035985177
-
Identification of genes periodically expressed in thehuman cell cycle and their expression in tumors
-
Whitfield, M. L., et al. Identification of genes periodically expressed in thehuman cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977-2000(2002).
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 1977-2000
-
-
Whitfield, M.L.1
-
30
-
-
38849199681
-
Visualizing spatiotemporal dynamics of multicellularcell-cycle progression
-
Sakaue-Sawano, A., et al. Visualizing spatiotemporal dynamics of multicellularcell-cycle progression. Cell 132, 487-498 (2008).
-
(2008)
Cell
, vol.132
, pp. 487-498
-
-
Sakaue-Sawano, A.1
-
31
-
-
84941080809
-
Cyclebase 3.0: A multi-organismdatabase on cell-cycle regulation and phenotypes
-
Santos, A., Wernersson, R., Jensen, L. J. Cyclebase 3.0: A multi-organismdatabase on cell-cycle regulation and phenotypes. Nucleic Acids Res. 43, D1140-D1144 (2015).
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. D1140-D1144
-
-
Santos, A.1
Wernersson, R.2
Jensen, L.J.3
-
32
-
-
0001235540
-
An analysis of severalheuristics for the traveling salesman problem
-
Rosenkrantz, D. J., Stearns, R. E., Philip, M., Lewis, I. An analysis of severalheuristics for the traveling salesman problem. SIAM J. Comput. 6, 563-581(1977).
-
(1977)
SIAM J. Comput.
, vol.6
, pp. 563-581
-
-
Rosenkrantz, D.J.1
Stearns, R.E.2
Philip, M.3
Lewis, I.4
-
33
-
-
27544451127
-
Simple decisionrules for classifying human cancers from gene expression profiles
-
Tan, A. C., Naiman, D. Q., Xu, L., Winslow, R. L., Geman, D. Simple decisionrules for classifying human cancers from gene expression profiles.Bioinformatics 21, 3896-3904 (2005).
-
(2005)
Bioinformatics
, vol.21
, pp. 3896-3904
-
-
Tan, A.C.1
Naiman, D.Q.2
Xu, L.3
Winslow, R.L.4
Geman, D.5
-
34
-
-
84870666600
-
On Brownian distance covariance and high dimensional data
-
Kosorok, M. R. On Brownian distance covariance and high dimensional data.Ann. Appl. Stat. 3, 1266-1269 (2009).
-
(2009)
Ann. Appl. Stat.
, vol.3
, pp. 1266-1269
-
-
Kosorok, M.R.1
-
35
-
-
39749164774
-
Estimating mutual information
-
Kraskov, A., Stögbauer, H., Grassberger, P. Estimating mutual information.Physical Review E 69, 066138 (2004).
-
(2004)
Physical Review E
, vol.69
, pp. 066138
-
-
Kraskov, A.1
Stögbauer, H.2
Grassberger, P.3
-
36
-
-
0034069495
-
Gene ontology: Tool for the unification of biology. TheGene ontology consortium
-
Ashburner, M., et al. Gene ontology: Tool for the unification of biology. TheGene ontology consortium. Nat. Genet. 25, 25-29 (2000).
-
(2000)
Nat. Genet.
, vol.25
, pp. 25-29
-
-
Ashburner, M.1
-
37
-
-
77953204308
-
High-resolution transcription atlas of the mitotic cellcycle in budding yeast
-
Granovskaia, M. V., et al. High-resolution transcription atlas of the mitotic cellcycle in budding yeast. Genome Biol. 11, R24 (2010).
-
(2010)
Genome Biol.
, vol.11
, pp. R24
-
-
Granovskaia, M.V.1
-
38
-
-
65249141709
-
Database for mRNA half-life of 19, 977 genes obtained byDNA microarray analysis of pluripotent and differentiating mouse embryonicstem cells
-
Sharova, L. V., et al. Database for mRNA half-life of 19, 977 genes obtained byDNA microarray analysis of pluripotent and differentiating mouse embryonicstem cells. DNA Res. 16, 45-58 (2009).
-
(2009)
DNA Res.
, vol.16
, pp. 45-58
-
-
Sharova, L.V.1
-
39
-
-
34249672387
-
Variations inDNA methylation patterns during the cell cycle of HeLa cells
-
Brown, S. E., Fraga, M. F., Weaver, I. C., Berdasco, M., Szyf, M. Variations inDNA methylation patterns during the cell cycle of HeLa cells. Epigenetics 2, 54-65 (2007).
-
(2007)
Epigenetics
, vol.2
, pp. 54-65
-
-
Brown, S.E.1
Fraga, M.F.2
Weaver, I.C.3
Berdasco, M.4
Szyf, M.5
-
40
-
-
84949579823
-
DNAmethylation is stable during replication and cell cycle arrest
-
Vandiver, A. R., Idrizi, A., Rizzardi, L., Feinberg, A. P., Hansen, K. D. DNAmethylation is stable during replication and cell cycle arrest. Sci. Rep. 5, 17911(2015).
-
(2015)
Sci. Rep.
, vol.5
, pp. 17911
-
-
Vandiver, A.R.1
Idrizi, A.2
Rizzardi, L.3
Feinberg, A.P.4
Hansen, K.D.5
-
41
-
-
84929684999
-
Highly parallel genome-wide expression profiling ofindividual cells using nanoliter droplets
-
Macosko, E. Z., et al. Highly parallel genome-wide expression profiling ofindividual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
MacOsko, E.Z.1
-
42
-
-
84885617426
-
Single-cell Hi-C reveals cell-to-cell variability in chromosomestructure
-
Nagano, T., et al. Single-cell Hi-C reveals cell-to-cell variability in chromosomestructure. Nature 502, 59-64 (2013).
-
(2013)
Nature
, vol.502
, pp. 59-64
-
-
Nagano, T.1
-
43
-
-
84937857359
-
Single-cell chromatin accessibility reveals principles ofregulatory variation
-
Buenrostro, J. D., et al. Single-cell chromatin accessibility reveals principles ofregulatory variation. Nature 523, 486-490 (2015).
-
(2015)
Nature
, vol.523
, pp. 486-490
-
-
Buenrostro, J.D.1
-
44
-
-
84930178333
-
G&T-seq: Parallel sequencing of single-cell genomes andtranscriptomes
-
Macaulay, I. C., et al. G&T-seq: Parallel sequencing of single-cell genomes andtranscriptomes. Nat. Methods 12, 519-522 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 519-522
-
-
MacAulay, I.C.1
-
45
-
-
84909592563
-
A circadian gene expression atlas in mammals: Implications for biology andmedicine
-
Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E., Hogenesch, J. B.A circadian gene expression atlas in mammals: Implications for biology andmedicine. Proc. Natl Acad. Sci. USA 111, 16219-16224 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 16219-16224
-
-
Zhang, R.1
Lahens, N.F.2
Ballance, H.I.3
Hughes, M.E.4
Hogenesch, J.B.5
-
46
-
-
77958471357
-
Differential expression analysis for sequence countdata
-
Anders, S., Huber, W. Differential expression analysis for sequence countdata. Genome Biol. 11, R106 (2010).
-
(2010)
Genome Biol.
, vol.11
, pp. R106
-
-
Anders, S.1
Huber, W.2
-
48
-
-
84901831004
-
Validation of noise models forsingle-cell transcriptomics
-
Grun, D., Kester, L., van Oudenaarden, A. Validation of noise models forsingle-cell transcriptomics. Nat. Methods 11, 637-640 (2014).
-
(2014)
Nat. Methods
, vol.11
, pp. 637-640
-
-
Grun, D.1
Kester, L.2
Van Oudenaarden, A.3
-
49
-
-
83755163018
-
Detecting novel associations in large data sets
-
Reshef, D. N., et al. Detecting novel associations in large data sets. Science 334, 1518-1524 (2011).
-
(2011)
Science
, vol.334
, pp. 1518-1524
-
-
Reshef, D.N.1
|