메뉴 건너뛰기




Volumn 8, Issue 1, 2017, Pages

Reconstructing cell cycle pseudo time-series via single-cell transcriptome data

Author keywords

[No Author keywords available]

Indexed keywords

TRANSCRIPTOME;

EID: 85021092677     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-017-00039-z     Document Type: Article
Times cited : (104)

References (49)
  • 1
    • 34147153781 scopus 로고    scopus 로고
    • Dysregulation of cardiogenesis, cardiac conduction, cell cyclein mice lacking miRNA-1-2
    • Zhao, Y., et al. Dysregulation of cardiogenesis, cardiac conduction, cell cyclein mice lacking miRNA-1-2. Cell 129, 303-317 (2007).
    • (2007) Cell , vol.129 , pp. 303-317
    • Zhao, Y.1
  • 2
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genesof the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman, P. T., et al. Comprehensive identification of cell cycle-regulated genesof the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol.Cell 9, 3273-3297 (1998).
    • (1998) Mol. Biol.Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1
  • 3
    • 84898761557 scopus 로고    scopus 로고
    • A proteomic chronology of gene expression through the cell cycle inhuman myeloid leukemia cells
    • Ly, T., et al. A proteomic chronology of gene expression through the cell cycle inhuman myeloid leukemia cells. Elife 3, e01630 (2014).
    • (2014) Elife , vol.3 , pp. e01630
    • Ly, T.1
  • 4
    • 84893910301 scopus 로고    scopus 로고
    • Quantitative assessment of single-cell RNA-sequencingmethods
    • Wu, A. R., et al. Quantitative assessment of single-cell RNA-sequencingmethods. Nat. Methods 11, 41-46 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 41-46
    • Wu, A.R.1
  • 5
    • 67349146589 scopus 로고    scopus 로고
    • mRNA-Seq whole-transcriptome analysis of a single cell
    • Tang, F., et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat.Methods 6, 377-382 (2009).
    • (2009) Nat.Methods , vol.6 , pp. 377-382
    • Tang, F.1
  • 7
    • 84903185013 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic paracrine control ofcellular variation
    • Shalek, A. K., et al. Single-cell RNA-seq reveals dynamic paracrine control ofcellular variation. Nature 510, 363-369 (2014).
    • (2014) Nature , vol.510 , pp. 363-369
    • Shalek, A.K.1
  • 9
    • 84957569471 scopus 로고    scopus 로고
    • Electrophysiological, transcriptomic and morphologicprofiling of single neurons using Patch-seq
    • Cadwell, C. R., et al. Electrophysiological, transcriptomic and morphologicprofiling of single neurons using Patch-seq. Nat. Biotechnol. 34, 199-203(2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 199-203
    • Cadwell, C.R.1
  • 10
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analyticalchallenges in single-cell transcriptomics
    • Stegle, O., Teichmann, S. A., Marioni, J. C. Computational and analyticalchallenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133-145 (2015).
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 11
    • 84959122613 scopus 로고    scopus 로고
    • Oscope identifies oscillatory genes in unsynchronized single-cellRNA-seq experiments
    • Leng, N., et al. Oscope identifies oscillatory genes in unsynchronized single-cellRNA-seq experiments. Nat. Methods 12, 947-950 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 947-950
    • Leng, N.1
  • 12
    • 84939772971 scopus 로고    scopus 로고
    • Computational assignment of cell-cycle stage fromsingle-cell transcriptome data
    • Scialdone, A., et al. Computational assignment of cell-cycle stage fromsingle-cell transcriptome data. Methods 85, 54-61 (2015).
    • (2015) Methods , vol.85 , pp. 54-61
    • Scialdone, A.1
  • 13
    • 84956599311 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals changes in cell cycle anddifferentiation programs upon aging of hematopoietic stem cells
    • Kowalczyk, M. S., et al. Single-cell RNA-seq reveals changes in cell cycle anddifferentiation programs upon aging of hematopoietic stem cells. Genome Res.25, 1860-1872 (2015).
    • (2015) Genome Res. , vol.25 , pp. 1860-1872
    • Kowalczyk, M.S.1
  • 14
    • 84924365758 scopus 로고    scopus 로고
    • Bifurcation analysis of single-cell gene expression datareveals epigenetic landscape
    • Marco, E., et al. Bifurcation analysis of single-cell gene expression datareveals epigenetic landscape. Proc. Natl Acad. Sci. USA 111, E5643-E5650(2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. E5643-E5650
    • Marco, E.1
  • 15
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions arerevealed by pseudotemporal ordering of single cells
    • Trapnell, C., et al. The dynamics and regulators of cell fate decisions arerevealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 16
    • 84982806105 scopus 로고    scopus 로고
    • TSCAN: Pseudo-time reconstruction and evaluation in single-cellRNA-seq analysis
    • Ji, Z., Ji, H. TSCAN: Pseudo-time reconstruction and evaluation in single-cellRNA-seq analysis. Nucleic Acids Res. 44, e117 (2016).
    • (2016) Nucleic Acids Res. , vol.44 , pp. e117
    • Ji, Z.1    Ji, H.2
  • 17
    • 84899574465 scopus 로고    scopus 로고
    • Single-cell trajectory detection uncovers progression andregulatory coordination in human B cell development
    • Bendall, S. C., et al. Single-cell trajectory detection uncovers progression andregulatory coordination in human B cell development. Cell 157, 714-725(2014).
    • (2014) Cell , vol.157 , pp. 714-725
    • Bendall, S.C.1
  • 18
    • 84974587998 scopus 로고    scopus 로고
    • Wishbone identifies bifurcating developmental trajectories fromsingle-cell data
    • Setty, M., et al. Wishbone identifies bifurcating developmental trajectories fromsingle-cell data. Nat. Biotechnol. 34, 637-645 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 637-645
    • Setty, M.1
  • 20
    • 84874346987 scopus 로고    scopus 로고
    • Dynamics extracted from fixed cells reveal feedback linking cellgrowth to cell cycle
    • Kafri, R., et al. Dynamics extracted from fixed cells reveal feedback linking cellgrowth to cell cycle. Nature 494, 480-483 (2013).
    • (2013) Nature , vol.494 , pp. 480-483
    • Kafri, R.1
  • 21
    • 84959123422 scopus 로고    scopus 로고
    • Trajectories ofcell-cycle progression from fixed cell populations
    • Gut, G., Tadmor, M. D., Pe'er, D., Pelkmans, L., Liberali, P. Trajectories ofcell-cycle progression from fixed cell populations. Nat. Methods 12, 951-954(2015).
    • (2015) Nat. Methods , vol.12 , pp. 951-954
    • Gut, G.1    Tadmor, M.D.2    Pe'Er, D.3    Pelkmans, L.4    Liberali, P.5
  • 22
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity insingle-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner, F., et al. Computational analysis of cell-to-cell heterogeneity insingle-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat.Biotechnol. 33, 155-160 (2015).
    • (2015) Nat.Biotechnol. , vol.33 , pp. 155-160
    • Buettner, F.1
  • 23
    • 84876085773 scopus 로고    scopus 로고
    • Quartz-Seq: A highly reproducible and sensitive single-cellRNA sequencing method, reveals non-genetic gene-expression heterogeneity
    • Sasagawa, Y., et al. Quartz-Seq: A highly reproducible and sensitive single-cellRNA sequencing method, reveals non-genetic gene-expression heterogeneity.Genome Biol. 14, R31 (2013).
    • (2013) Genome Biol. , vol.14 , pp. R31
    • Sasagawa, Y.1
  • 24
    • 84905457964 scopus 로고    scopus 로고
    • Modeling Bi-modality improves characterization of cell cycleon gene expression in single cells
    • McDavid, A., et al. Modeling Bi-modality improves characterization of cell cycleon gene expression in single cells. PLoS Comput. Biol. 10, e1003696 (2014).
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003696
    • McDavid, A.1
  • 25
    • 84947748539 scopus 로고    scopus 로고
    • Single Cell RNA-sequencing of Pluripotent Statesunlocks modular transcriptional variation
    • Kolodziejczyk, A. A., et al. Single Cell RNA-sequencing of Pluripotent Statesunlocks modular transcriptional variation. Cell Stem Cell 17, 471-485 (2015).
    • (2015) Cell Stem Cell , vol.17 , pp. 471-485
    • Kolodziejczyk, A.A.1
  • 26
    • 84900529199 scopus 로고    scopus 로고
    • Reconstructing lineage hierarchies of the distal lungepithelium using single-cell RNA-seq
    • Treutlein, B., et al. Reconstructing lineage hierarchies of the distal lungepithelium using single-cell RNA-seq. Nature 509, 371-378 (2014).
    • (2014) Nature , vol.509 , pp. 371-378
    • Treutlein, B.1
  • 27
    • 84963614956 scopus 로고    scopus 로고
    • Dissecting the multicellular ecosystem of metastatic melanomaby single-cell RNA-seq
    • Tirosh, I., et al. Dissecting the multicellular ecosystem of metastatic melanomaby single-cell RNA-seq. Science 352, 189-196 (2016).
    • (2016) Science , vol.352 , pp. 189-196
    • Tirosh, I.1
  • 28
    • 84959255113 scopus 로고    scopus 로고
    • Parallel single-cell sequencing links transcriptional andepigenetic heterogeneity
    • Angermueller, C., et al. Parallel single-cell sequencing links transcriptional andepigenetic heterogeneity. Nat. Methods 13, 229-232 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 229-232
    • Angermueller, C.1
  • 29
    • 0035985177 scopus 로고    scopus 로고
    • Identification of genes periodically expressed in thehuman cell cycle and their expression in tumors
    • Whitfield, M. L., et al. Identification of genes periodically expressed in thehuman cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977-2000(2002).
    • (2002) Mol. Biol. Cell , vol.13 , pp. 1977-2000
    • Whitfield, M.L.1
  • 30
    • 38849199681 scopus 로고    scopus 로고
    • Visualizing spatiotemporal dynamics of multicellularcell-cycle progression
    • Sakaue-Sawano, A., et al. Visualizing spatiotemporal dynamics of multicellularcell-cycle progression. Cell 132, 487-498 (2008).
    • (2008) Cell , vol.132 , pp. 487-498
    • Sakaue-Sawano, A.1
  • 31
    • 84941080809 scopus 로고    scopus 로고
    • Cyclebase 3.0: A multi-organismdatabase on cell-cycle regulation and phenotypes
    • Santos, A., Wernersson, R., Jensen, L. J. Cyclebase 3.0: A multi-organismdatabase on cell-cycle regulation and phenotypes. Nucleic Acids Res. 43, D1140-D1144 (2015).
    • (2015) Nucleic Acids Res. , vol.43 , pp. D1140-D1144
    • Santos, A.1    Wernersson, R.2    Jensen, L.J.3
  • 32
    • 0001235540 scopus 로고
    • An analysis of severalheuristics for the traveling salesman problem
    • Rosenkrantz, D. J., Stearns, R. E., Philip, M., Lewis, I. An analysis of severalheuristics for the traveling salesman problem. SIAM J. Comput. 6, 563-581(1977).
    • (1977) SIAM J. Comput. , vol.6 , pp. 563-581
    • Rosenkrantz, D.J.1    Stearns, R.E.2    Philip, M.3    Lewis, I.4
  • 33
    • 27544451127 scopus 로고    scopus 로고
    • Simple decisionrules for classifying human cancers from gene expression profiles
    • Tan, A. C., Naiman, D. Q., Xu, L., Winslow, R. L., Geman, D. Simple decisionrules for classifying human cancers from gene expression profiles.Bioinformatics 21, 3896-3904 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 3896-3904
    • Tan, A.C.1    Naiman, D.Q.2    Xu, L.3    Winslow, R.L.4    Geman, D.5
  • 34
    • 84870666600 scopus 로고    scopus 로고
    • On Brownian distance covariance and high dimensional data
    • Kosorok, M. R. On Brownian distance covariance and high dimensional data.Ann. Appl. Stat. 3, 1266-1269 (2009).
    • (2009) Ann. Appl. Stat. , vol.3 , pp. 1266-1269
    • Kosorok, M.R.1
  • 36
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology. TheGene ontology consortium
    • Ashburner, M., et al. Gene ontology: Tool for the unification of biology. TheGene ontology consortium. Nat. Genet. 25, 25-29 (2000).
    • (2000) Nat. Genet. , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 37
    • 77953204308 scopus 로고    scopus 로고
    • High-resolution transcription atlas of the mitotic cellcycle in budding yeast
    • Granovskaia, M. V., et al. High-resolution transcription atlas of the mitotic cellcycle in budding yeast. Genome Biol. 11, R24 (2010).
    • (2010) Genome Biol. , vol.11 , pp. R24
    • Granovskaia, M.V.1
  • 38
    • 65249141709 scopus 로고    scopus 로고
    • Database for mRNA half-life of 19, 977 genes obtained byDNA microarray analysis of pluripotent and differentiating mouse embryonicstem cells
    • Sharova, L. V., et al. Database for mRNA half-life of 19, 977 genes obtained byDNA microarray analysis of pluripotent and differentiating mouse embryonicstem cells. DNA Res. 16, 45-58 (2009).
    • (2009) DNA Res. , vol.16 , pp. 45-58
    • Sharova, L.V.1
  • 39
    • 34249672387 scopus 로고    scopus 로고
    • Variations inDNA methylation patterns during the cell cycle of HeLa cells
    • Brown, S. E., Fraga, M. F., Weaver, I. C., Berdasco, M., Szyf, M. Variations inDNA methylation patterns during the cell cycle of HeLa cells. Epigenetics 2, 54-65 (2007).
    • (2007) Epigenetics , vol.2 , pp. 54-65
    • Brown, S.E.1    Fraga, M.F.2    Weaver, I.C.3    Berdasco, M.4    Szyf, M.5
  • 41
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling ofindividual cells using nanoliter droplets
    • Macosko, E. Z., et al. Highly parallel genome-wide expression profiling ofindividual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).
    • (2015) Cell , vol.161 , pp. 1202-1214
    • MacOsko, E.Z.1
  • 42
    • 84885617426 scopus 로고    scopus 로고
    • Single-cell Hi-C reveals cell-to-cell variability in chromosomestructure
    • Nagano, T., et al. Single-cell Hi-C reveals cell-to-cell variability in chromosomestructure. Nature 502, 59-64 (2013).
    • (2013) Nature , vol.502 , pp. 59-64
    • Nagano, T.1
  • 43
    • 84937857359 scopus 로고    scopus 로고
    • Single-cell chromatin accessibility reveals principles ofregulatory variation
    • Buenrostro, J. D., et al. Single-cell chromatin accessibility reveals principles ofregulatory variation. Nature 523, 486-490 (2015).
    • (2015) Nature , vol.523 , pp. 486-490
    • Buenrostro, J.D.1
  • 44
    • 84930178333 scopus 로고    scopus 로고
    • G&T-seq: Parallel sequencing of single-cell genomes andtranscriptomes
    • Macaulay, I. C., et al. G&T-seq: Parallel sequencing of single-cell genomes andtranscriptomes. Nat. Methods 12, 519-522 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 519-522
    • MacAulay, I.C.1
  • 46
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence countdata
    • Anders, S., Huber, W. Differential expression analysis for sequence countdata. Genome Biol. 11, R106 (2010).
    • (2010) Genome Biol. , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 48
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models forsingle-cell transcriptomics
    • Grun, D., Kester, L., van Oudenaarden, A. Validation of noise models forsingle-cell transcriptomics. Nat. Methods 11, 637-640 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 637-640
    • Grun, D.1    Kester, L.2    Van Oudenaarden, A.3
  • 49
    • 83755163018 scopus 로고    scopus 로고
    • Detecting novel associations in large data sets
    • Reshef, D. N., et al. Detecting novel associations in large data sets. Science 334, 1518-1524 (2011).
    • (2011) Science , vol.334 , pp. 1518-1524
    • Reshef, D.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.