메뉴 건너뛰기




Volumn 19, Issue 1, 2018, Pages

Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics

Author keywords

Lineage inference; Pseudotime inference; RNA Seq; Single cell

Indexed keywords

ARTICLE; CELL LINEAGE; CLUSTER ANALYSIS; GENE EXPRESSION; MEASUREMENT ACCURACY; PSEUDOTIME INFERENCE; RNA SEQUENCE; SIMULATION; SINGLE CELL ANALYSIS; SLINGSHOT; STATISTICAL ANALYSIS; STATISTICAL PARAMETERS; TRANSCRIPTOMICS; GENE EXPRESSION PROFILING; HUMAN; METABOLISM; PROCEDURES; SKELETAL MYOBLAST; SOFTWARE;

EID: 85048725973     PISSN: None     EISSN: 14712164     Source Type: Journal    
DOI: 10.1186/s12864-018-4772-0     Document Type: Article
Times cited : (1463)

References (32)
  • 2
    • 84994860357 scopus 로고    scopus 로고
    • Revealing the vectors of cellular identity with single-cell genomics
    • Wagner A, Regev A, Yosef N. Revealing the vectors of cellular identity with single-cell genomics. Nat Biotechnol. 2016; 34(11):1145-60.
    • (2016) Nat Biotechnol , vol.34 , Issue.11 , pp. 1145-1160
    • Wagner, A.1    Regev, A.2    Yosef, N.3
  • 5
    • 84983310597 scopus 로고    scopus 로고
    • Laplacian eigenmaps and principal curves for high resolution pseudotemporal ordering of single-cell RNA-seq profiles
    • Technical report, Functional Genomics Unit, MRC, University of Oxford, UK biorxiv
    • Campbell K, Ponting CP, Webber C. Laplacian eigenmaps and principal curves for high resolution pseudotemporal ordering of single-cell RNA-seq profiles. Technical report, Functional Genomics Unit, MRC, University of Oxford, UK. 2015. biorxiv.org/content/early/2015/09/18/027219.
    • (2015)
    • Campbell, K.1    Ponting, C.P.2    Webber, C.3
  • 6
    • 84984643819 scopus 로고    scopus 로고
    • Diffusion pseudotime robustly reconstructs lineage branching
    • Haghverdi L, Büttner M, Wolf FA, Buettner F, Theis FJ. Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods. 2016; 13(10):845-8. https://doi.org/10.1038/nmeth.3971. Accessed 26 July 2017.
    • (2016) Nat Methods , vol.13 , Issue.10 , pp. 845-848
    • Haghverdi, L.1    Büttner, M.2    Wolf, F.A.3    Buettner, F.4    Theis, F.J.5
  • 7
    • 84982806105 scopus 로고    scopus 로고
    • TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
    • Ji Z, Ji H. TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 2016; 44(13):117. https://doi.org/10.1093/nar/gkw430.
    • (2016) Nucleic Acids Res , vol.44 , Issue.13 , pp. 117
    • Ji, Z.1    Ji, H.2
  • 8
    • 85010878111 scopus 로고    scopus 로고
    • Single-cell mRNA quantification and differential analysis with Census
    • Qiu X, Hill A, Packer J, Lin D, Ma Y-A, Trapnell C. Single-cell mRNA quantification and differential analysis with Census. Nat Methods. 2017; 14(3):309-15. https://doi.org/10.1038/nmeth.4150. Accessed 26 Sept 2017.
    • (2017) Nat Methods , vol.14 , Issue.3 , pp. 309-315
    • Qiu, X.1    Hill, A.2    Packer, J.3    Lin, D.4    Ma, Y.-A.5    Trapnell, C.6
  • 11
    • 85049105514 scopus 로고    scopus 로고
    • A comparison of single-cell trajectory inference methods: towards more accurate and robust tools
    • Accessed 3 May 2018
    • Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell trajectory inference methods: towards more accurate and robust tools. 2018:276907. https://www.biorxiv.org/content/early/2018/03/05/276907. Accessed 3 May 2018.
    • (2018) , pp. 276907
    • Saelens, W.1    Cannoodt, R.2    Todorov, H.3    Saeys, Y.4
  • 12
    • 84962658087 scopus 로고    scopus 로고
    • Design and computational analysis of single-cell RNA-sequencing experiments
    • Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016; 17(63):63.
    • (2016) Genome Biol , vol.17 , Issue.63 , pp. 63
    • Bacher, R.1    Kendziorski, C.2
  • 13
  • 14
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
    • Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Comput. 2003; 15(6):1373-96. https://doi.org/10.1162/089976603321780317.
    • (2003) Neural Comput , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 16
    • 84983497196 scopus 로고    scopus 로고
    • Pseudotime estimation: deconfounding single cell time series
    • Reid JE, Wernisch L. Pseudotime estimation: deconfounding single cell time series. Bioinforma (Oxford, England). 2016; 32(19):2973-80. https://doi.org/10.1093/bioinformatics/btw372.
    • (2016) Bioinforma (Oxford, England) , vol.32 , Issue.19 , pp. 2973-2980
    • Reid, J.E.1    Wernisch, L.2
  • 17
    • 85039160886 scopus 로고    scopus 로고
    • Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers
    • Campbell KR, Yau C. Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers. Wellcome Open Res. 2017; 2. https://doi.org/10.12688/wellcomeopenres.11087.1.
    • (2017) Wellcome Open Res , pp. 2
    • Campbell, K.R.1    Yau, C.2
  • 18
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing Data using t-SNE
    • Maaten LVD, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res. 2008; 9:2579-605. https://doi.org/10.1007/s10479-011-0841-3.
    • (2008) J Mach Learn Res , vol.9 , pp. 2579-2605
    • Maaten, L.V.D.1    Hinton, G.2
  • 19
    • 85027981692 scopus 로고    scopus 로고
    • Bioconductor workflow for single-cell rna sequencing: Normalization, dimensionality reduction, clustering, and lineage inference
    • Perraudeau F, Risso D, Street K, Purdom E, Dudoit S. Bioconductor workflow for single-cell rna sequencing: Normalization, dimensionality reduction, clustering, and lineage inference. F1000Research. 2017; 6:1158.
    • (2017) F1000Research , vol.6 , pp. 1158
    • Perraudeau, F.1    Risso, D.2    Street, K.3    Purdom, E.4    Dudoit, S.5
  • 20
    • 85048731044 scopus 로고    scopus 로고
    • Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq
    • bioRxiv 235382
    • Cole MB, Risso D, Wagner A, DeTomaso D, Ngai J, Purdom E, Dudoit S, Yosef N. Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq. 2017. bioRxiv 235382.
    • (2017)
    • Cole, M.B.1    Risso, D.2    Wagner, A.3    DeTomaso, D.4    Ngai, J.5    Purdom, E.6    Dudoit, S.7    Yosef, N.8
  • 21
    • 85040785722 scopus 로고    scopus 로고
    • JP Vert A general and flexible method for signal extraction from single-cell RNA-seq data
    • Risso D, Perraudeau F, Gribkova S, Dudoit S. JP Vert A general and flexible method for signal extraction from single-cell RNA-seq data. Nat Commun. 2018; 9(1):284.
    • (2018) Nat Commun , vol.9 , Issue.1 , pp. 284
    • Risso, D.1    Perraudeau, F.2    Gribkova, S.3    Dudoit, S.4
  • 22
    • 85048729047 scopus 로고    scopus 로고
    • ClusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-cell and other large gene expression datasets
    • bioRxiv 280545
    • Risso D, Purvis L, Fletcher R, Das D, Ngai J, Dudoit S, Purdom E. ClusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-cell and other large gene expression datasets. 2018. bioRxiv 280545.
    • (2018)
    • Risso, D.1    Purvis, L.2    Fletcher, R.3    Das, D.4    Ngai, J.5    Dudoit, S.6    Purdom, E.7
  • 23
    • 33646591544 scopus 로고    scopus 로고
    • Transcriptional Pulsing of a Developmental Gene
    • Chubb JR, Trcek T, Shenoy SM, Singer RH. Transcriptional Pulsing of a Developmental Gene. Curr Biol. 2006; 16(10):1018-25. https://doi.org/10.1016/j.cub.2006.03.092. Accessed 10 Apr 2017.
    • (2006) Curr Biol , vol.16 , Issue.10 , pp. 1018-1025
    • Chubb, J.R.1    Trcek, T.2    Shenoy, S.M.3    Singer, R.H.4
  • 24
    • 33748994704 scopus 로고    scopus 로고
    • Stochastic mRNA Synthesis in Mammalian Cells
    • Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S. Stochastic mRNA Synthesis in Mammalian Cells. PLoS Biol. 2006; 4(10):309. https://doi.org/10.1371/journal.pbio.0040309. Accessed 10 Apr 2017.
    • (2006) PLoS Biol , vol.4 , Issue.10 , pp. 309
    • Raj, A.1    Peskin, C.S.2    Tranchina, D.3    Vargas, D.Y.4    Tyagi, S.5
  • 25
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014; 11(7):740-2. https://doi.org/10.1038/nmeth.2967. Accessed 10 Apr 2017.
    • (2014) Nat Methods , vol.11 , Issue.7 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 28
    • 85029212828 scopus 로고    scopus 로고
    • Splatter: simulation of single-cell RNA sequencing data
    • Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 2017; 18:174. https://doi.org/10.1186/s13059-017-1305-0.
    • (2017) Genome Biol , vol.18 , pp. 174
    • Zappia, L.1    Phipson, B.2    Oshlack, A.3
  • 29
    • 85042148811 scopus 로고    scopus 로고
    • Bias, Robustness And Scalability In Differential Expression Analysis Of Single-Cell RNA-Seq Data
    • bioRxiv Accessed 22 Nov 2017
    • Soneson C, Robinson MD. Bias, Robustness And Scalability In Differential Expression Analysis Of Single-Cell RNA-Seq Data. bioRxiv. 2017:143289. https://doi.org/10.1101/143289. Accessed 22 Nov 2017.
    • (2017) , pp. 143289
    • Soneson, C.1    Robinson, M.D.2
  • 30
    • 84999791835 scopus 로고    scopus 로고
    • Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference
    • Campbell KR, Yau C. Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference. PLoS Comput Biol. 2016; 12(11):1005212. https://doi.org/10.1371/journal.pcbi.1005212. Accessed 29 Sept 2017.
    • (2016) PLoS Comput Biol , vol.12 , Issue.11 , pp. 1005212
    • Campbell, K.R.1    Yau, C.2
  • 31
    • 85044862023 scopus 로고    scopus 로고
    • Deciphering cell lineage specification during male sex determination with single-cell RNA sequencing
    • bioRxiv Accessed 21 Sept 2017
    • Stevant I, Neirijnck Y, Borel C, Escoffier J, Smith LB, Antonarakis SE, Dermitzakis ET, Nef S. Deciphering cell lineage specification during male sex determination with single-cell RNA sequencing. bioRxiv. 2017:190264. https://doi.org/10.1101/190264. Accessed 21 Sept 2017.
    • (2017) , pp. 190264
    • Stevant, I.1    Neirijnck, Y.2    Borel, C.3    Escoffier, J.4    Smith, L.B.5    Antonarakis, S.E.6    Dermitzakis, E.T.7    Nef, S.8
  • 32
    • 85010390664 scopus 로고    scopus 로고
    • mclust 5: clustering, classification and density estimation using Gaussian finite mixture models
    • Scrucca L, Fop M, Murphy TB, Raftery AE. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J. 2016; 8(1):205-33.
    • (2016) R J , vol.8 , Issue.1 , pp. 205-233
    • Scrucca, L.1    Fop, M.2    Murphy, T.B.3    Raftery, A.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.