메뉴 건너뛰기




Volumn , Issue , 2018, Pages 1654-1663

Image Super-Resolution via Dual-State Recurrent Networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; OPTICAL RESOLVING POWER; RECURRENT NEURAL NETWORKS;

EID: 85062859914     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2018.00178     Document Type: Conference Paper
Times cited : (266)

References (47)
  • 1
    • 85030245132 scopus 로고    scopus 로고
    • Ntire 2017 challenge on single image super-resolution: Dataset and study
    • E. Agustsson and R. Timofte. Ntire 2017 challenge on single image super-resolution: Dataset and study. In CVPR Workshops, 2017.
    • (2017) CVPR Workshops
    • Agustsson, E.1    Timofte, R.2
  • 2
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. TPAMI, 33(5):898-916, 2011.
    • (2011) TPAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 5
    • 5044219639 scopus 로고    scopus 로고
    • Superresolution through neighbor embedding
    • IEEE
    • H. Chang, D.-Y. Yeung, and Y. Xiong. Superresolution through neighbor embedding. In CVPR, volume 1, pages I-I. IEEE, 2004.
    • (2004) CVPR , vol.1 , pp. 1
    • Chang, H.1    Yeung, D.-Y.2    Xiong, Y.3
  • 7
    • 85030226061 scopus 로고    scopus 로고
    • A deep convolutional neural network with selection units for super-resolution
    • IEEE
    • J.-S. Choi and M. Kim. A deep convolutional neural network with selection units for super-resolution. In CVPRW, pages 1150-1156. IEEE, 2017.
    • (2017) CVPRW , pp. 1150-1156
    • Choi, J.-S.1    Kim, M.2
  • 9
    • 85198028989 scopus 로고    scopus 로고
    • Imagenet: A large-scale hierarchical image database
    • IEEE
    • J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, pages 248-255. IEEE, 2009.
    • (2009) CVPR , pp. 248-255
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, L.-J.4    Li, K.5    Fei-Fei, L.6
  • 10
    • 84921971467 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image superresolution
    • C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image superresolution. In ECCV, 2014.
    • (2014) ECCV
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 11
    • 84990068546 scopus 로고    scopus 로고
    • Accelerating the super-resolution convolutional neural network
    • C. Dong, C. C. Loy, and X. Tang. Accelerating the super-resolution convolutional neural network. In ECCV, 2016.
    • (2016) ECCV
    • Dong, C.1    Loy, C.C.2    Tang, X.3
  • 14
    • 79951563340 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, 2010.
    • (2010) AISTATS
    • Glorot, X.1    Bengio, Y.2
  • 16
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 18
    • 84990052802 scopus 로고    scopus 로고
    • Weinberger. Deep networks with stochastic depth
    • Springer
    • G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. Deep networks with stochastic depth. In ECCV, pages 646-661. Springer, 2016.
    • (2016) ECCV , pp. 646-661
    • Huang, G.1    Sun, Y.2    Liu, Z.3    Sedra, K.Q.D.4
  • 19
    • 84959188745 scopus 로고    scopus 로고
    • Single image super-resolution from transformed self-exemplars
    • J.-B. Huang, A. Singh, and N. Ahuja. Single image super-resolution from transformed self-exemplars. In CVPR, 2015.
    • (2015) CVPR
    • Huang, J.-B.1    Singh, A.2    Ahuja, N.3
  • 20
    • 84986325587 scopus 로고    scopus 로고
    • Accurate image super-resolution using very deep convolutional networks
    • J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-resolution using very deep convolutional networks. In CVPR, 2016.
    • (2016) CVPR
    • Kim, J.1    Kwon Lee, J.2    Mu Lee, K.3
  • 21
    • 84986253618 scopus 로고    scopus 로고
    • Deeplyrecursive convolutional network for image superresolution
    • J. Kim, J. Kwon Lee, and K. Mu Lee. Deeplyrecursive convolutional network for image superresolution. In CVPR, 2016.
    • (2016) CVPR
    • Kim, J.1    Kwon Lee, J.2    Mu Lee, K.3
  • 22
    • 85041899955 scopus 로고    scopus 로고
    • Deep laplacian pyramid networks for fast and accurate super-resolution
    • W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep laplacian pyramid networks for fast and accurate super-resolution. In CVPR, 2017.
    • (2017) CVPR
    • Lai, W.-S.1    Huang, J.-B.2    Ahuja, N.3    Yang, M.-H.4
  • 25
    • 85030237937 scopus 로고    scopus 로고
    • Enhanced deep residual networks for single image superresolution
    • B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced deep residual networks for single image superresolution. In CVPR Workshops, 2017.
    • (2017) CVPR Workshops
    • Lim, B.1    Son, S.2    Kim, H.3    Nah, S.4    Lee, K.M.5
  • 26
    • 85041903214 scopus 로고    scopus 로고
    • Robust video super-resolution with learned temporal dynamics
    • D. Liu, Z. Wang, Y. Fan, X. Liu, Z. Wang, S. Chang, and T. Huang. Robust video super-resolution with learned temporal dynamics. In ICCV, pages 2507-2515, 2017.
    • (2017) ICCV , pp. 2507-2515
    • Liu, D.1    Wang, Z.2    Fan, Y.3    Liu, X.4    Wang, Z.5    Chang, S.6    Huang, T.7
  • 27
    • 85016071159 scopus 로고    scopus 로고
    • Learning a mixture of deep networks for single image superresolution
    • Springer
    • D. Liu, Z. Wang, N. Nasrabadi, and T. Huang. Learning a mixture of deep networks for single image superresolution. In ACCV, pages 145-156. Springer, 2016.
    • (2016) ACCV , pp. 145-156
    • Liu, D.1    Wang, Z.2    Nasrabadi, N.3    Huang, T.4
  • 28
    • 84971529522 scopus 로고    scopus 로고
    • Robust single image super-resolution via deep networks with sparse prior
    • D. Liu, Z. Wang, B. Wen, J. Yang, W. Han, and T. S. Huang. Robust single image super-resolution via deep networks with sparse prior. TIP, 25(7):3194-3207, 2016.
    • (2016) TIP , vol.25 , Issue.7 , pp. 3194-3207
    • Liu, D.1    Wang, Z.2    Wen, B.3    Yang, J.4    Han, W.5    Huang, T.S.6
  • 29
    • 85018922091 scopus 로고    scopus 로고
    • Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
    • X. Mao, C. Shen, and Y.-B. Yang. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In NIPS, pages 2802-2810, 2016.
    • (2016) NIPS , pp. 2802-2810
    • Mao, X.1    Shen, C.2    Yang, Y.-B.3
  • 30
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, 2001.
    • (2001) ICCV
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 31
    • 85041907399 scopus 로고    scopus 로고
    • Enhancenet: Single image super-resolution through automated texture synthesis
    • Oct
    • M. S. M. Sajjadi, B. Scholkopf, and M. Hirsch. Enhancenet: Single image super-resolution through automated texture synthesis. In ICCV, Oct 2017.
    • (2017) ICCV
    • Sajjadi, M.S.M.1    Scholkopf, B.2    Hirsch, M.3
  • 32
    • 84959234116 scopus 로고    scopus 로고
    • Fast and accurate image upscaling with super-resolution forests
    • S. Schulter, C. Leistner, and H. Bischof. Fast and accurate image upscaling with super-resolution forests. In CVPR, 2015.
    • (2015) CVPR
    • Schulter, S.1    Leistner, C.2    Bischof, H.3
  • 33
    • 28844464788 scopus 로고    scopus 로고
    • An information fidelity criterion for image quality assessment using natural scene statistics
    • H. R. Sheikh, A. C. Bovik, and G. De Veciana. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on image processing, 14(12):2117-2128, 2005.
    • (2005) IEEE Transactions on Image Processing , vol.14 , Issue.12 , pp. 2117-2128
    • Sheikh, H.R.1    Bovik, A.C.2    De Veciana, G.3
  • 34
    • 84986308391 scopus 로고    scopus 로고
    • Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
    • W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In CVPR, pages 1874-1883, 2016.
    • (2016) CVPR , pp. 1874-1883
    • Shi, W.1    Caballero, J.2    Huszár, F.3    Totz, J.4    Aitken, A.P.5    Bishop, R.6    Rueckert, D.7    Wang, Z.8
  • 35
    • 85041918798 scopus 로고    scopus 로고
    • Image super-resolution via deep recursive residual network
    • Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep recursive residual network. In CVPR, 2017.
    • (2017) CVPR
    • Tai, Y.1    Yang, J.2    Liu, X.3
  • 37
    • 84964362868 scopus 로고    scopus 로고
    • A: Adjusted anchored neighborhood regression for fast super-resolution
    • R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted anchored neighborhood regression for fast super-resolution. In ACCV, 2014.
    • (2014) ACCV
    • Timofte, R.1    De Smet, V.2    Van Gool, L.3
  • 38
    • 85041894273 scopus 로고    scopus 로고
    • Image superresolution using dense skip connections
    • T. Tong, G. Li, X. Liu, and Q. Gao. Image superresolution using dense skip connections. In ICCV, 2017.
    • (2017) ICCV
    • Tong, T.1    Li, G.2    Liu, X.3    Gao, Q.4
  • 39
    • 85019250516 scopus 로고    scopus 로고
    • Residual networks behave like ensembles of relatively shallow networks
    • A. Veit, M. J. Wilber, and S. Belongie. Residual networks behave like ensembles of relatively shallow networks. In NIPS, 2016.
    • (2016) NIPS
    • Veit, A.1    Wilber, M.J.2    Belongie, S.3
  • 41
    • 84973897612 scopus 로고    scopus 로고
    • Deep networks for image super-resolution with sparse prior
    • Z.Wang, D. Liu, J. Yang,W. Han, and T. Huang. Deep networks for image super-resolution with sparse prior. In ICCV, 2015.
    • (2015) ICCV
    • Wang, Z.1    Liu, D.2    Yang, J.3    Han, W.4    Huang, T.5
  • 43
    • 84864128043 scopus 로고    scopus 로고
    • Coupled dictionary training for image superresolution
    • J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang. Coupled dictionary training for image superresolution. TIP, 21(8):3467-3478, 2012.
    • (2012) TIP , vol.21 , Issue.8 , pp. 3467-3478
    • Yang, J.1    Wang, Z.2    Lin, Z.3    Cohen, S.4    Huang, T.5
  • 44
    • 78049312324 scopus 로고    scopus 로고
    • Image super-resolution via sparse representation
    • J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse representation. TIP, 2010.
    • (2010) TIP
    • Yang, J.1    Wright, J.2    Huang, T.S.3    Ma, Y.4
  • 46
    • 80052803206 scopus 로고    scopus 로고
    • On single image scale-up using sparse-representations
    • R. Zeyde, M. Elad, and M. Protter. On single image scale-up using sparse-representations. In ICCS, 2010.
    • (2010) ICCS
    • Zeyde, R.1    Elad, M.2    Protter, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.