-
1
-
-
85030245132
-
Ntire 2017 challenge on single image super-resolution: Dataset and study
-
E. Agustsson and R. Timofte. Ntire 2017 challenge on single image super-resolution: Dataset and study. In CVPR Workshops, 2017.
-
(2017)
CVPR Workshops
-
-
Agustsson, E.1
Timofte, R.2
-
2
-
-
79953048649
-
Contour detection and hierarchical image segmentation
-
P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. TPAMI, 33(5):898-916, 2011.
-
(2011)
TPAMI
, vol.33
, Issue.5
, pp. 898-916
-
-
Arbelaez, P.1
Maire, M.2
Fowlkes, C.3
Malik, J.4
-
5
-
-
5044219639
-
Superresolution through neighbor embedding
-
IEEE
-
H. Chang, D.-Y. Yeung, and Y. Xiong. Superresolution through neighbor embedding. In CVPR, volume 1, pages I-I. IEEE, 2004.
-
(2004)
CVPR
, vol.1
, pp. 1
-
-
Chang, H.1
Yeung, D.-Y.2
Xiong, Y.3
-
6
-
-
85038368230
-
-
Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng. Dual path networks. arXiv preprint arXiv:1707.01629, 2017.
-
(2017)
Dual Path Networks
-
-
Chen, Y.1
Li, J.2
Xiao, H.3
Jin, X.4
Yan, S.5
Feng, J.6
-
7
-
-
85030226061
-
A deep convolutional neural network with selection units for super-resolution
-
IEEE
-
J.-S. Choi and M. Kim. A deep convolutional neural network with selection units for super-resolution. In CVPRW, pages 1150-1156. IEEE, 2017.
-
(2017)
CVPRW
, pp. 1150-1156
-
-
Choi, J.-S.1
Kim, M.2
-
9
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
IEEE
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, pages 248-255. IEEE, 2009.
-
(2009)
CVPR
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
10
-
-
84921971467
-
Learning a deep convolutional network for image superresolution
-
C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image superresolution. In ECCV, 2014.
-
(2014)
ECCV
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
11
-
-
84990068546
-
Accelerating the super-resolution convolutional neural network
-
C. Dong, C. C. Loy, and X. Tang. Accelerating the super-resolution convolutional neural network. In ECCV, 2016.
-
(2016)
ECCV
-
-
Dong, C.1
Loy, C.C.2
Tang, X.3
-
12
-
-
85030220628
-
Balanced two-stage residual networks for image super-resolution
-
Y. Fan, H. Shi, J. Yu, D. Liu,W. Han, H. Yu, Z.Wang, X. Wang, and T. S. Huang. Balanced two-stage residual networks for image super-resolution. In CVPR Workshops, 2017.
-
(2017)
CVPR Workshops
-
-
Fan, Y.1
Shi, H.2
Yu, J.3
Liu, D.4
Han, W.5
Yu, H.6
Wang, Z.7
Wang, X.8
Huang, T.S.9
-
13
-
-
0036500772
-
Example-based super-resolution
-
W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-based super-resolution. IEEE Computer graphics and Applications, 22(2):56-65, 2002.
-
(2002)
IEEE Computer Graphics and Applications
, vol.22
, Issue.2
, pp. 56-65
-
-
Freeman, W.T.1
Jones, T.R.2
Pasztor, E.C.3
-
14
-
-
79951563340
-
Understanding the difficulty of training deep feedforward neural networks
-
X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, 2010.
-
(2010)
AISTATS
-
-
Glorot, X.1
Bengio, Y.2
-
15
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision, pages 1026-1034, 2015.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
16
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
18
-
-
84990052802
-
Weinberger. Deep networks with stochastic depth
-
Springer
-
G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. Deep networks with stochastic depth. In ECCV, pages 646-661. Springer, 2016.
-
(2016)
ECCV
, pp. 646-661
-
-
Huang, G.1
Sun, Y.2
Liu, Z.3
Sedra, K.Q.D.4
-
19
-
-
84959188745
-
Single image super-resolution from transformed self-exemplars
-
J.-B. Huang, A. Singh, and N. Ahuja. Single image super-resolution from transformed self-exemplars. In CVPR, 2015.
-
(2015)
CVPR
-
-
Huang, J.-B.1
Singh, A.2
Ahuja, N.3
-
20
-
-
84986325587
-
Accurate image super-resolution using very deep convolutional networks
-
J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-resolution using very deep convolutional networks. In CVPR, 2016.
-
(2016)
CVPR
-
-
Kim, J.1
Kwon Lee, J.2
Mu Lee, K.3
-
21
-
-
84986253618
-
Deeplyrecursive convolutional network for image superresolution
-
J. Kim, J. Kwon Lee, and K. Mu Lee. Deeplyrecursive convolutional network for image superresolution. In CVPR, 2016.
-
(2016)
CVPR
-
-
Kim, J.1
Kwon Lee, J.2
Mu Lee, K.3
-
22
-
-
85041899955
-
Deep laplacian pyramid networks for fast and accurate super-resolution
-
W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep laplacian pyramid networks for fast and accurate super-resolution. In CVPR, 2017.
-
(2017)
CVPR
-
-
Lai, W.-S.1
Huang, J.-B.2
Ahuja, N.3
Yang, M.-H.4
-
23
-
-
85019017178
-
-
C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, et al. Photo-realistic single image superresolution using a generative adversarial network. arXiv preprint arXiv:1609.04802, 2016.
-
(2016)
Photo-realistic Single Image Superresolution Using A Generative Adversarial Network
-
-
Ledig, C.1
Theis, L.2
Huszár, F.3
Caballero, J.4
Cunningham, A.5
Acosta, A.6
Aitken, A.7
Tejani, A.8
Totz, J.9
Wang, Z.10
-
25
-
-
85030237937
-
Enhanced deep residual networks for single image superresolution
-
B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced deep residual networks for single image superresolution. In CVPR Workshops, 2017.
-
(2017)
CVPR Workshops
-
-
Lim, B.1
Son, S.2
Kim, H.3
Nah, S.4
Lee, K.M.5
-
26
-
-
85041903214
-
Robust video super-resolution with learned temporal dynamics
-
D. Liu, Z. Wang, Y. Fan, X. Liu, Z. Wang, S. Chang, and T. Huang. Robust video super-resolution with learned temporal dynamics. In ICCV, pages 2507-2515, 2017.
-
(2017)
ICCV
, pp. 2507-2515
-
-
Liu, D.1
Wang, Z.2
Fan, Y.3
Liu, X.4
Wang, Z.5
Chang, S.6
Huang, T.7
-
27
-
-
85016071159
-
Learning a mixture of deep networks for single image superresolution
-
Springer
-
D. Liu, Z. Wang, N. Nasrabadi, and T. Huang. Learning a mixture of deep networks for single image superresolution. In ACCV, pages 145-156. Springer, 2016.
-
(2016)
ACCV
, pp. 145-156
-
-
Liu, D.1
Wang, Z.2
Nasrabadi, N.3
Huang, T.4
-
28
-
-
84971529522
-
Robust single image super-resolution via deep networks with sparse prior
-
D. Liu, Z. Wang, B. Wen, J. Yang, W. Han, and T. S. Huang. Robust single image super-resolution via deep networks with sparse prior. TIP, 25(7):3194-3207, 2016.
-
(2016)
TIP
, vol.25
, Issue.7
, pp. 3194-3207
-
-
Liu, D.1
Wang, Z.2
Wen, B.3
Yang, J.4
Han, W.5
Huang, T.S.6
-
29
-
-
85018922091
-
Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
-
X. Mao, C. Shen, and Y.-B. Yang. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In NIPS, pages 2802-2810, 2016.
-
(2016)
NIPS
, pp. 2802-2810
-
-
Mao, X.1
Shen, C.2
Yang, Y.-B.3
-
30
-
-
0034850577
-
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
-
D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, 2001.
-
(2001)
ICCV
-
-
Martin, D.1
Fowlkes, C.2
Tal, D.3
Malik, J.4
-
31
-
-
85041907399
-
Enhancenet: Single image super-resolution through automated texture synthesis
-
Oct
-
M. S. M. Sajjadi, B. Scholkopf, and M. Hirsch. Enhancenet: Single image super-resolution through automated texture synthesis. In ICCV, Oct 2017.
-
(2017)
ICCV
-
-
Sajjadi, M.S.M.1
Scholkopf, B.2
Hirsch, M.3
-
32
-
-
84959234116
-
Fast and accurate image upscaling with super-resolution forests
-
S. Schulter, C. Leistner, and H. Bischof. Fast and accurate image upscaling with super-resolution forests. In CVPR, 2015.
-
(2015)
CVPR
-
-
Schulter, S.1
Leistner, C.2
Bischof, H.3
-
33
-
-
28844464788
-
An information fidelity criterion for image quality assessment using natural scene statistics
-
H. R. Sheikh, A. C. Bovik, and G. De Veciana. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on image processing, 14(12):2117-2128, 2005.
-
(2005)
IEEE Transactions on Image Processing
, vol.14
, Issue.12
, pp. 2117-2128
-
-
Sheikh, H.R.1
Bovik, A.C.2
De Veciana, G.3
-
34
-
-
84986308391
-
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
-
W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In CVPR, pages 1874-1883, 2016.
-
(2016)
CVPR
, pp. 1874-1883
-
-
Shi, W.1
Caballero, J.2
Huszár, F.3
Totz, J.4
Aitken, A.P.5
Bishop, R.6
Rueckert, D.7
Wang, Z.8
-
35
-
-
85041918798
-
Image super-resolution via deep recursive residual network
-
Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep recursive residual network. In CVPR, 2017.
-
(2017)
CVPR
-
-
Tai, Y.1
Yang, J.2
Liu, X.3
-
36
-
-
85030220122
-
Ntire 2017 challenge on single image superresolution: Methods and results
-
IEEE, 2017. IEEE Conference on
-
R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, L. Zhang, B. Lim, S. Son, H. Kim, S. Nah, K. M. Lee, et al. Ntire 2017 challenge on single image superresolution: Methods and results. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE Conference on, pages 1110-1121. IEEE, 2017.
-
(2017)
Computer Vision and Pattern Recognition Workshops (CVPRW)
, pp. 1110-1121
-
-
Timofte, R.1
Agustsson, E.2
Van Gool, L.3
Yang, M.-H.4
Zhang, L.5
Lim, B.6
Son, S.7
Kim, H.8
Nah, S.9
Lee, K.M.10
-
37
-
-
84964362868
-
A: Adjusted anchored neighborhood regression for fast super-resolution
-
R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted anchored neighborhood regression for fast super-resolution. In ACCV, 2014.
-
(2014)
ACCV
-
-
Timofte, R.1
De Smet, V.2
Van Gool, L.3
-
38
-
-
85041894273
-
Image superresolution using dense skip connections
-
T. Tong, G. Li, X. Liu, and Q. Gao. Image superresolution using dense skip connections. In ICCV, 2017.
-
(2017)
ICCV
-
-
Tong, T.1
Li, G.2
Liu, X.3
Gao, Q.4
-
39
-
-
85019250516
-
Residual networks behave like ensembles of relatively shallow networks
-
A. Veit, M. J. Wilber, and S. Belongie. Residual networks behave like ensembles of relatively shallow networks. In NIPS, 2016.
-
(2016)
NIPS
-
-
Veit, A.1
Wilber, M.J.2
Belongie, S.3
-
40
-
-
1942436689
-
Image quality assessment: From error visibility to structural similarity
-
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600-612, 2004.
-
(2004)
IEEE Transactions on Image Processing
, vol.13
, Issue.4
, pp. 600-612
-
-
Wang, Z.1
Bovik, A.C.2
Sheikh, H.R.3
Simoncelli, E.P.4
-
41
-
-
84973897612
-
Deep networks for image super-resolution with sparse prior
-
Z.Wang, D. Liu, J. Yang,W. Han, and T. Huang. Deep networks for image super-resolution with sparse prior. In ICCV, 2015.
-
(2015)
ICCV
-
-
Wang, Z.1
Liu, D.2
Yang, J.3
Han, W.4
Huang, T.5
-
42
-
-
84952028763
-
Self-tuned deep super resolution
-
Z. Wang, Y. Yang, Z. Wang, S. Chang, W. Han, J. Yang, and T. Huang. Self-tuned deep super resolution. In CVPRW, pages 1-8, 2015.
-
(2015)
CVPRW
, pp. 1-8
-
-
Wang, Z.1
Yang, Y.2
Wang, Z.3
Chang, S.4
Han, W.5
Yang, J.6
Huang, T.7
-
43
-
-
84864128043
-
Coupled dictionary training for image superresolution
-
J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang. Coupled dictionary training for image superresolution. TIP, 21(8):3467-3478, 2012.
-
(2012)
TIP
, vol.21
, Issue.8
, pp. 3467-3478
-
-
Yang, J.1
Wang, Z.2
Lin, Z.3
Cohen, S.4
Huang, T.5
-
44
-
-
78049312324
-
Image super-resolution via sparse representation
-
J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse representation. TIP, 2010.
-
(2010)
TIP
-
-
Yang, J.1
Wright, J.2
Huang, T.S.3
Ma, Y.4
-
45
-
-
85030220315
-
-
C. Yunpeng, J. Xiaojie, K. Bingyi, F. Jiashi, and Y. Shuicheng. Sharing residual units through collective tensor factorization in deep neural networks. arXiv preprint arXiv:1703.02180, 2017.
-
(2017)
Sharing Residual Units Through Collective Tensor Factorization in Deep Neural Networks
-
-
Yunpeng, C.1
Xiaojie, J.2
Bingyi, K.3
Jiashi, F.4
Shuicheng, Y.5
-
46
-
-
80052803206
-
On single image scale-up using sparse-representations
-
R. Zeyde, M. Elad, and M. Protter. On single image scale-up using sparse-representations. In ICCS, 2010.
-
(2010)
ICCS
-
-
Zeyde, R.1
Elad, M.2
Protter, M.3
-
47
-
-
85019260288
-
Architectural complexity measures of recurrent neural networks
-
S. Zhang, Y. Wu, T. Che, Z. Lin, R. Memisevic, R. R. Salakhutdinov, and Y. Bengio. Architectural complexity measures of recurrent neural networks. In NIPS, 2016.
-
(2016)
NIPS
-
-
Zhang, S.1
Wu, Y.2
Che, T.3
Lin, Z.4
Memisevic, R.5
Salakhutdinov, R.R.6
Bengio, Y.7
|