메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 1637-1645

Deeply-recursive convolutional network for image super-resolution

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; OPTICAL RESOLVING POWER;

EID: 84986253618     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.181     Document Type: Conference Paper
Times cited : (3036)

References (32)
  • 4
    • 5044219639 scopus 로고    scopus 로고
    • Super-resolution through neighbor embedding
    • 2
    • H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding. In CVPR, 2004.
    • (2004) CVPR
    • Chang, H.1    Yeung, D.-Y.2    Xiong, Y.3
  • 5
    • 84977918054 scopus 로고    scopus 로고
    • Image superresolution using deep convolutional networks
    • 1, 2, 3, 6, 7, 8
    • C. Dong, C. C. Loy, K. He, and X. Tang. Image superresolution using deep convolutional networks. TPAMI, 2014.
    • (2014) TPAMI
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 6
    • 85083953781 scopus 로고    scopus 로고
    • Understanding deep architectures using a recursive convolutional network
    • 2
    • D. Eigen, J. Rolfe, R. Fergus, and Y. LeCun. Understanding deep architectures using a recursive convolutional network. In ICLR Workshop, 2014.
    • (2014) ICLR Workshop
    • Eigen, D.1    Rolfe, J.2    Fergus, R.3    LeCun, Y.4
  • 8
    • 77953187337 scopus 로고    scopus 로고
    • Super-resolution from a single image
    • 2
    • D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In ICCV, 2009.
    • (2009) ICCV
    • Glasner, D.1    Bagon, S.2    Irani, M.3
  • 9
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • 7
    • K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, 2015.
    • (2015) ICCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 10
    • 84959188745 scopus 로고    scopus 로고
    • Single image superresolution using transformed self-exemplars
    • 2, 6, 7, 8
    • J.-B. Huang, A. Singh, and N. Ahuja. Single image superresolution using transformed self-exemplars. In CVPR, 2015.
    • (2015) CVPR
    • Huang, J.-B.1    Singh, A.2    Ahuja, N.3
  • 12
    • 77951623771 scopus 로고    scopus 로고
    • Single-image super-resolution using sparse regression and natural image prior
    • 2
    • K. I. Kim and Y. Kwon. Single-image super-resolution using sparse regression and natural image prior. TPAMI, 2010.
    • (2010) TPAMI
    • Kim, K.I.1    Kwon, Y.2
  • 13
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 1
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 17
    • 84959193001 scopus 로고    scopus 로고
    • Recurrent convolutional neural network for object recognition
    • 2, 4
    • M. Liang and X. Hu. Recurrent convolutional neural network for object recognition. In CVPR, 2015.
    • (2015) CVPR
    • Liang, M.1    Hu, X.2
  • 19
    • 84898409537 scopus 로고    scopus 로고
    • Low-complexity single-image super-resolution based on nonnegative neighbor embedding
    • 2, 5, 7
    • C. G. Marco Bevilacqua, Aline Roumy and M.-L. A. Morel. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In BMVC, 2012.
    • (2012) BMVC
    • Marco Bevilacqua, C.G.1    Roumy, A.2    Morel, M.-L.A.3
  • 20
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • 7
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, 2001.
    • (2001) ICCV
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 21
    • 84897497795 scopus 로고    scopus 로고
    • On the difficulty of training recurrent neural networks
    • 4
    • R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In ICML, 2013.
    • (2013) ICML
    • Pascanu, R.1    Mikolov, T.2    Bengio, Y.3
  • 23
    • 84959234116 scopus 로고    scopus 로고
    • Fast and accurate image upscaling with super-resolution forests
    • 2, 6, 7, 8
    • S. Schulter, C. Leistner, and H. Bischof. Fast and accurate image upscaling with super-resolution forests. In CVPR, 2015.
    • (2015) CVPR
    • Schulter, S.1    Leistner, C.2    Bischof, H.3
  • 24
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • 1
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 25
    • 84877789646 scopus 로고    scopus 로고
    • Convolutional-recursive deep learning for 3d object classification
    • 2
    • R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng. Convolutional-recursive deep learning for 3d object classification. In NIPS, 2012.
    • (2012) NIPS
    • Socher, R.1    Huval, B.2    Bath, B.3    Manning, C.D.4    Ng, A.Y.5
  • 26
    • 84870715081 scopus 로고    scopus 로고
    • Semantic compositionality through recursive matrix-vector spaces
    • 7
    • R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. Semantic compositionality through recursive matrix-vector spaces. In EMNLP-CoNLL, 2012.
    • (2012) EMNLP-CoNLL
    • Socher, R.1    Huval, B.2    Manning, C.D.3    Ng, A.Y.4
  • 27
    • 51949110386 scopus 로고    scopus 로고
    • Image super-resolution using gradient profile prior
    • 2
    • J. Sun, Z. Xu, and H.-Y. Shum. Image super-resolution using gradient profile prior. In CVPR, 2008.
    • (2008) CVPR
    • Sun, J.1    Xu, Z.2    Shum, H.-Y.3
  • 28
    • 84898792173 scopus 로고    scopus 로고
    • Anchored neighborhood regression for fast example-based super-resolution
    • 2, 5, 7
    • R. Timofte, V. De, and L. V. Gool. Anchored neighborhood regression for fast example-based super-resolution. In ICCV, 2013.
    • (2013) ICCV
    • Timofte, R.1    De, V.2    Gool, L.V.3
  • 29
    • 84932095280 scopus 로고    scopus 로고
    • A+: Adjusted anchored neighborhood regression for fast super-resolution
    • 2, 5, 6, 7, 8
    • R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted anchored neighborhood regression for fast super-resolution. In ACCV, 2014.
    • (2014) ACCV
    • Timofte, R.1    De Smet, V.2    Van Gool, L.3
  • 31
    • 78049312324 scopus 로고    scopus 로고
    • Image superresolution via sparse representation
    • 2, 7
    • J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image superresolution via sparse representation. TIP, 2010.
    • (2010) TIP
    • Yang, J.1    Wright, J.2    Huang, T.S.3    Ma, Y.4
  • 32
    • 84855655878 scopus 로고    scopus 로고
    • On single image scaleup using sparse-representations
    • Springer, 2, 7
    • R. Zeyde, M. Elad, and M. Protter. On single image scaleup using sparse-representations. In Curves and Surfaces. Springer, 2012.
    • (2012) Curves and Surfaces
    • Zeyde, R.1    Elad, M.2    Protter, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.