메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 5835-5843

Deep laplacian pyramid networks for fast and accurate super-resolution

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; LAPLACE TRANSFORMS; NEURAL NETWORKS; OPTICAL RESOLVING POWER;

EID: 85041899955     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.618     Document Type: Conference Paper
Times cited : (2711)

References (39)
  • 1
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • 4, 5
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. TPAMI, 33(5):898-916, 2011. 4, 5
    • (2011) TPAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 2
    • 84898409537 scopus 로고    scopus 로고
    • Low-complexity single-image super-resolution based on nonnegative neighbor embedding
    • M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In BMVC, 2012. 2, 5
    • (2012) BMVC
    • Bevilacqua, M.1    Roumy, A.2    Guillemot, C.3    Alberi-Morel, M.L.4
  • 3
    • 6944257066 scopus 로고    scopus 로고
    • Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods
    • 4
    • A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. IJCV, 61(3):211-231, 2005. 4
    • (2005) IJCV , vol.61 , Issue.3 , pp. 211-231
    • Bruhn, A.1    Weickert, J.2    Schnörr, C.3
  • 4
    • 0020737631 scopus 로고
    • The laplacian pyramid as a compact image code
    • 3
    • P. J. Burt and E. H. Adelson. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31(4):532-540, 1983. 3
    • (1983) IEEE Transactions on Communications , vol.31 , Issue.4 , pp. 532-540
    • Burt, P.J.1    Adelson, E.H.2
  • 5
    • 5044219639 scopus 로고    scopus 로고
    • Super-resolution through neighbor embedding
    • In 2
    • H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding. In CVPR, 2004. 2
    • (2004) CVPR
    • Chang, H.1    Yeung, D.-Y.2    Xiong, Y.3
  • 6
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • In 3
    • E. L. Denton, S. Chintala, and R. Fergus. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, 2015. 3
    • (2015) NIPS
    • Denton, E.L.1    Chintala, S.2    Fergus, R.3
  • 7
    • 84962128851 scopus 로고    scopus 로고
    • Image super-resolution using deep convolutional networks
    • 1, 2, 3, 5, 6, 7, 8
    • C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using deep convolutional networks. TPAMI, 38(2):295-307, 2015. 1, 2, 3, 5, 6, 7, 8
    • (2015) TPAMI , vol.38 , Issue.2 , pp. 295-307
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 8
    • 85030212408 scopus 로고    scopus 로고
    • Accelerating the super-resolution convolutional neural network
    • In 1, 2, 3, 5, 6, 7, 8
    • C. Dong, C. C. Loy, and X. Tang. Accelerating the super-resolution convolutional neural network. In ECCV, 2016. 1, 2, 3, 5, 6, 7, 8
    • (2016) ECCV
    • Dong, C.1    Loy, C.C.2    Tang, X.3
  • 9
    • 79955668981 scopus 로고    scopus 로고
    • Image and video upscaling from local self-examples
    • 2
    • G. Freedman and R. Fattal. Image and video upscaling from local self-examples. ACM TOG (Proc. of SIGGRAPH), 30(2):12, 2011. 2
    • (2011) ACM TOG (Proc. of SIGGRAPH) , vol.30 , Issue.2 , pp. 12
    • Freedman, G.1    Fattal, R.2
  • 11
    • 85028048141 scopus 로고    scopus 로고
    • Laplacian pyramid reconstruction and refinement for semantic segmentation
    • In 3
    • G. Ghiasi and C. C. Fowlkes. Laplacian pyramid reconstruction and refinement for semantic segmentation. In ECCV, 2016. 3
    • (2016) ECCV
    • Ghiasi, G.1    Fowlkes, C.C.2
  • 12
    • 77953187337 scopus 로고    scopus 로고
    • Super-resolution from a single image
    • In 2
    • D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In ICCV, 2009. 2
    • (2009) ICCV
    • Glasner, D.1    Bagon, S.2    Irani, M.3
  • 13
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • In 4
    • K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, 2015. 4
    • (2015) ICCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 14
    • 0029182262 scopus 로고
    • Pyramid-based texture analysis/synthesis
    • In 3
    • D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In SIGGRAPH, 1995. 3
    • (1995) SIGGRAPH
    • Heeger, D.J.1    Bergen, J.R.2
  • 15
    • 84959188745 scopus 로고    scopus 로고
    • Single image super-resolution from transformed self-exemplars
    • In 2, 5, 6, 7, 8
    • J.-B. Huang, A. Singh, and N. Ahuja. Single image super-resolution from transformed self-exemplars. In CVPR, 2015. 2, 5, 6, 7, 8
    • (2015) CVPR
    • Huang, J.-B.1    Singh, A.2    Ahuja, N.3
  • 16
    • 85019245160 scopus 로고    scopus 로고
    • Perceptual losses for real-time style transfer and super-resolution
    • In 3
    • J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016. 3
    • (2016) ECCV
    • Johnson, J.1    Alahi, A.2    Fei-Fei, L.3
  • 17
    • 84986325587 scopus 로고    scopus 로고
    • Accurate image super-resolution using very deep convolutional networks
    • In 1, 2, 3, 4, 5, 6, 7, 8
    • J. Kim, J. K. Lee, and K. M. Lee. Accurate image super-resolution using very deep convolutional networks. In CVPR, 2016. 1, 2, 3, 4, 5, 6, 7, 8
    • (2016) CVPR
    • Kim, J.1    Lee, J.K.2    Lee, K.M.3
  • 18
    • 84986253618 scopus 로고    scopus 로고
    • Deeply-recursive convolutional network for image super-resolution
    • In 2, 3, 5, 6, 7, 8
    • J. Kim, J. K. Lee, and K. M. Lee. Deeply-recursive convolutional network for image super-resolution. In CVPR, 2016. 2, 3, 5, 6, 7, 8
    • (2016) CVPR
    • Kim, J.1    Lee, J.K.2    Lee, K.M.3
  • 19
    • 77951623771 scopus 로고    scopus 로고
    • Single-image super-resolution using sparse regression and natural image prior
    • 2
    • K. I. Kim and Y. Kwon. Single-image super-resolution using sparse regression and natural image prior. TPAMI, 32(6):1127-1133, 2010. 2
    • (2010) TPAMI , vol.32 , Issue.6 , pp. 1127-1133
    • Kim, K.I.1    Kwon, Y.2
  • 22
    • 84973904649 scopus 로고    scopus 로고
    • Video super-resolution via deep draft-ensemble learning
    • In 8
    • R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia. Video super-resolution via deep draft-ensemble learning. In ICCV, 2015. 8
    • (2015) ICCV
    • Liao, R.1    Tao, X.2    Li, R.3    Ma, Z.4    Jia, J.5
  • 24
    • 80051913065 scopus 로고    scopus 로고
    • Local laplacian filters: Edge-aware image processing with a laplacian pyramid
    • 3
    • S. Paris, S. W. Hasinoff, and J. Kautz. Local laplacian filters: Edge-aware image processing with a laplacian pyramid. ACM TOG (Proc. of SIGGRAPH), 30(4):68, 2011. 3
    • (2011) ACM TOG (Proc. of SIGGRAPH) , vol.30 , Issue.4 , pp. 68
    • Paris, S.1    Hasinoff, S.W.2    Kautz, J.3
  • 26
    • 84959234116 scopus 로고    scopus 로고
    • Fast and accurate image upscaling with super-resolution forests
    • In 1, 2, 4, 5, 6, 7
    • S. Schulter, C. Leistner, and H. Bischof. Fast and accurate image upscaling with super-resolution forests. In CVPR, 2015. 1, 2, 4, 5, 6, 7
    • (2015) CVPR
    • Schulter, S.1    Leistner, C.2    Bischof, H.3
  • 27
    • 28844464788 scopus 로고    scopus 로고
    • An information fidelity criterion for image quality assessment using natural scene statistics
    • 6
    • H. R. Sheikh, A. C. Bovik, and G. De Veciana. An information fidelity criterion for image quality assessment using natural scene statistics. TIP, 14(12):2117-2128, 2005. 6
    • (2005) TIP , vol.14 , Issue.12 , pp. 2117-2128
    • Sheikh, H.R.1    Bovik, A.C.2    De Veciana, G.3
  • 28
    • 84986308391 scopus 로고    scopus 로고
    • Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
    • W. Shi, J. Caballero, F. Huszar, J. Totz, A. Aitken, R. Bishop, D. Rueckert, and Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In CVPR, 2016. 1, 3
    • (2016) CVPR
    • Shi, W.1    Caballero, J.2    Huszar, F.3    Totz, J.4    Aitken, A.5    Bishop, R.6    Rueckert, D.7    Wang, Z.8
  • 29
    • 84959211848 scopus 로고    scopus 로고
    • Super-resolution using sub-band self-similarity
    • In 2
    • A. Singh and N. Ahuja. Super-resolution using sub-band self-similarity. In ACCV, 2014. 2
    • (2014) ACCV
    • Singh, A.1    Ahuja, N.2
  • 30
    • 84932095280 scopus 로고    scopus 로고
    • A+: Adjusted anchored neighborhood regression for fast super-resolution
    • In 1, 2, 5, 6, 7
    • R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted anchored neighborhood regression for fast super-resolution. In ACCV, 2014. 1, 2, 5, 6, 7
    • (2014) ACCV
    • Timofte, R.1    De Smet, V.2    Van Gool, L.3
  • 31
    • 84986290514 scopus 로고    scopus 로고
    • MatConvNet: Convolutional neural networks for matlab
    • In 5
    • A. Vedaldi and K. Lenc. MatConvNet: Convolutional neural networks for matlab. In ACM MM, 2015. 5
    • (2015) ACM MM
    • Vedaldi, A.1    Lenc, K.2
  • 32
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • 6
    • Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: From error visibility to structural similarity. TIP, 13(4):600-612, 2004. 6
    • (2004) TIP , vol.13 , Issue.4 , pp. 600-612
    • Wang, Z.1    Bovik, A.C.2    Sheikh, H.R.3    Simoncelli, E.P.4
  • 33
    • 84973897612 scopus 로고    scopus 로고
    • Deep networks for image super-resolution with sparse prior
    • In 1, 2, 3, 5, 6, 7
    • Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep networks for image super-resolution with sparse prior. In ICCV, 2015. 1, 2, 3, 5, 6, 7
    • (2015) ICCV
    • Wang, Z.1    Liu, D.2    Yang, J.3    Han, W.4    Huang, T.5
  • 34
    • 85042552390 scopus 로고    scopus 로고
    • Holistically-nested edge detection
    • In 4
    • S. Xie and Z. Tu. Holistically-nested edge detection. In CVPR, 2015. 4
    • (2015) CVPR
    • Xie, S.1    Tu, Z.2
  • 35
    • 84955298423 scopus 로고    scopus 로고
    • Single-image super-resolution: A benchmark
    • In 6
    • C.-Y. Yang, C. Ma, and M.-H. Yang. Single-image super-resolution: a benchmark. In ECCV. 2014. 6
    • (2014) ECCV
    • Yang, C.-Y.1    Ma, C.2    Yang, M.-H.3
  • 36
    • 84898787395 scopus 로고    scopus 로고
    • Fast direct super-resolution by simple functions
    • C.-Y. Yang and M.-H. Yang. Fast direct super-resolution by simple functions. In ICCV, 2013. 1, 2
    • (2013) ICCV
    • Yang, C.-Y.1    Yang, M.-H.2
  • 37
    • 51949105499 scopus 로고    scopus 로고
    • Image super-resolution as sparse representation of raw image patches
    • J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-resolution as sparse representation of raw image patches. In CVPR, 2008. 1, 2
    • (2008) CVPR
    • Yang, J.1    Wright, J.2    Huang, T.3    Ma, Y.4
  • 38
    • 78049312324 scopus 로고    scopus 로고
    • Image super-resolution via sparse representation
    • 1, 2, 4
    • J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse representation. TIP, 19(11):2861-2873, 2010. 1, 2, 4
    • (2010) TIP , vol.19 , Issue.11 , pp. 2861-2873
    • Yang, J.1    Wright, J.2    Huang, T.S.3    Ma, Y.4
  • 39
    • 80052803206 scopus 로고    scopus 로고
    • On single image scale-up using sparse-representations
    • In 2, 5
    • R. Zeyde, M. Elad, and M. Protter. On single image scale-up using sparse-representations. In Curves and Surfaces. 2010. 2, 5
    • (2010) Curves and Surfaces
    • Zeyde, R.1    Elad, M.2    Protter, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.