-
1
-
-
79953048649
-
Contour detection and hierarchical image segmentation
-
4, 5
-
P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. TPAMI, 33(5):898-916, 2011. 4, 5
-
(2011)
TPAMI
, vol.33
, Issue.5
, pp. 898-916
-
-
Arbelaez, P.1
Maire, M.2
Fowlkes, C.3
Malik, J.4
-
2
-
-
84898409537
-
Low-complexity single-image super-resolution based on nonnegative neighbor embedding
-
M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In BMVC, 2012. 2, 5
-
(2012)
BMVC
-
-
Bevilacqua, M.1
Roumy, A.2
Guillemot, C.3
Alberi-Morel, M.L.4
-
3
-
-
6944257066
-
Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods
-
4
-
A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. IJCV, 61(3):211-231, 2005. 4
-
(2005)
IJCV
, vol.61
, Issue.3
, pp. 211-231
-
-
Bruhn, A.1
Weickert, J.2
Schnörr, C.3
-
5
-
-
5044219639
-
Super-resolution through neighbor embedding
-
In 2
-
H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding. In CVPR, 2004. 2
-
(2004)
CVPR
-
-
Chang, H.1
Yeung, D.-Y.2
Xiong, Y.3
-
6
-
-
84965143571
-
Deep generative image models using a laplacian pyramid of adversarial networks
-
In 3
-
E. L. Denton, S. Chintala, and R. Fergus. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, 2015. 3
-
(2015)
NIPS
-
-
Denton, E.L.1
Chintala, S.2
Fergus, R.3
-
7
-
-
84962128851
-
Image super-resolution using deep convolutional networks
-
1, 2, 3, 5, 6, 7, 8
-
C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using deep convolutional networks. TPAMI, 38(2):295-307, 2015. 1, 2, 3, 5, 6, 7, 8
-
(2015)
TPAMI
, vol.38
, Issue.2
, pp. 295-307
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
8
-
-
85030212408
-
Accelerating the super-resolution convolutional neural network
-
In 1, 2, 3, 5, 6, 7, 8
-
C. Dong, C. C. Loy, and X. Tang. Accelerating the super-resolution convolutional neural network. In ECCV, 2016. 1, 2, 3, 5, 6, 7, 8
-
(2016)
ECCV
-
-
Dong, C.1
Loy, C.C.2
Tang, X.3
-
9
-
-
79955668981
-
Image and video upscaling from local self-examples
-
2
-
G. Freedman and R. Fattal. Image and video upscaling from local self-examples. ACM TOG (Proc. of SIGGRAPH), 30(2):12, 2011. 2
-
(2011)
ACM TOG (Proc. of SIGGRAPH)
, vol.30
, Issue.2
, pp. 12
-
-
Freedman, G.1
Fattal, R.2
-
10
-
-
0036500772
-
Example-based super-resolution
-
2
-
W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-based super-resolution. IEEE, Computer Graphics and Applications, 22(2):56-65, 2002. 2
-
(2002)
IEEE, Computer Graphics and Applications
, vol.22
, Issue.2
, pp. 56-65
-
-
Freeman, W.T.1
Jones, T.R.2
Pasztor, E.C.3
-
11
-
-
85028048141
-
Laplacian pyramid reconstruction and refinement for semantic segmentation
-
In 3
-
G. Ghiasi and C. C. Fowlkes. Laplacian pyramid reconstruction and refinement for semantic segmentation. In ECCV, 2016. 3
-
(2016)
ECCV
-
-
Ghiasi, G.1
Fowlkes, C.C.2
-
12
-
-
77953187337
-
Super-resolution from a single image
-
In 2
-
D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In ICCV, 2009. 2
-
(2009)
ICCV
-
-
Glasner, D.1
Bagon, S.2
Irani, M.3
-
13
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
In 4
-
K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, 2015. 4
-
(2015)
ICCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
14
-
-
0029182262
-
Pyramid-based texture analysis/synthesis
-
In 3
-
D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In SIGGRAPH, 1995. 3
-
(1995)
SIGGRAPH
-
-
Heeger, D.J.1
Bergen, J.R.2
-
15
-
-
84959188745
-
Single image super-resolution from transformed self-exemplars
-
In 2, 5, 6, 7, 8
-
J.-B. Huang, A. Singh, and N. Ahuja. Single image super-resolution from transformed self-exemplars. In CVPR, 2015. 2, 5, 6, 7, 8
-
(2015)
CVPR
-
-
Huang, J.-B.1
Singh, A.2
Ahuja, N.3
-
16
-
-
85019245160
-
Perceptual losses for real-time style transfer and super-resolution
-
In 3
-
J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016. 3
-
(2016)
ECCV
-
-
Johnson, J.1
Alahi, A.2
Fei-Fei, L.3
-
17
-
-
84986325587
-
Accurate image super-resolution using very deep convolutional networks
-
In 1, 2, 3, 4, 5, 6, 7, 8
-
J. Kim, J. K. Lee, and K. M. Lee. Accurate image super-resolution using very deep convolutional networks. In CVPR, 2016. 1, 2, 3, 4, 5, 6, 7, 8
-
(2016)
CVPR
-
-
Kim, J.1
Lee, J.K.2
Lee, K.M.3
-
18
-
-
84986253618
-
Deeply-recursive convolutional network for image super-resolution
-
In 2, 3, 5, 6, 7, 8
-
J. Kim, J. K. Lee, and K. M. Lee. Deeply-recursive convolutional network for image super-resolution. In CVPR, 2016. 2, 3, 5, 6, 7, 8
-
(2016)
CVPR
-
-
Kim, J.1
Lee, J.K.2
Lee, K.M.3
-
19
-
-
77951623771
-
Single-image super-resolution using sparse regression and natural image prior
-
2
-
K. I. Kim and Y. Kwon. Single-image super-resolution using sparse regression and natural image prior. TPAMI, 32(6):1127-1133, 2010. 2
-
(2010)
TPAMI
, vol.32
, Issue.6
, pp. 1127-1133
-
-
Kim, K.I.1
Kwon, Y.2
-
20
-
-
85035231525
-
Photo-realistic single image super-resolution using a generative adversarial network
-
In 3
-
C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single image super-resolution using a generative adversarial network. In CVPR, 2017. 3
-
(2017)
CVPR
-
-
Ledig, C.1
Theis, L.2
Huszar, F.3
Caballero, J.4
Cunningham, A.5
Acosta, A.6
Aitken, A.7
Tejani, A.8
Totz, J.9
Wang, Z.10
Shi, W.11
-
21
-
-
85009928594
-
Deeply-supervised nets, 2015
-
In 4
-
C. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-supervised nets, 2015. In International Conference on Artificial Intelligence and Statistics, 2015. 4
-
(2015)
International Conference on Artificial Intelligence and Statistics
-
-
Lee, C.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
22
-
-
84973904649
-
Video super-resolution via deep draft-ensemble learning
-
In 8
-
R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia. Video super-resolution via deep draft-ensemble learning. In ICCV, 2015. 8
-
(2015)
ICCV
-
-
Liao, R.1
Tao, X.2
Li, R.3
Ma, Z.4
Jia, J.5
-
23
-
-
85029671878
-
Sketch-based manga retrieval using manga109 dataset
-
5
-
Y. Matsui, K. Ito, Y. Aramaki, T. Yamasaki, and K. Aizawa. Sketch-based manga retrieval using manga109 dataset. Multimedia Tools and Applications, pages 1-28, 2016. 5
-
(2016)
Multimedia Tools and Applications
, pp. 1-28
-
-
Matsui, Y.1
Ito, K.2
Aramaki, Y.3
Yamasaki, T.4
Aizawa, K.5
-
24
-
-
80051913065
-
Local laplacian filters: Edge-aware image processing with a laplacian pyramid
-
3
-
S. Paris, S. W. Hasinoff, and J. Kautz. Local laplacian filters: Edge-aware image processing with a laplacian pyramid. ACM TOG (Proc. of SIGGRAPH), 30(4):68, 2011. 3
-
(2011)
ACM TOG (Proc. of SIGGRAPH)
, vol.30
, Issue.4
, pp. 68
-
-
Paris, S.1
Hasinoff, S.W.2
Kautz, J.3
-
26
-
-
84959234116
-
Fast and accurate image upscaling with super-resolution forests
-
In 1, 2, 4, 5, 6, 7
-
S. Schulter, C. Leistner, and H. Bischof. Fast and accurate image upscaling with super-resolution forests. In CVPR, 2015. 1, 2, 4, 5, 6, 7
-
(2015)
CVPR
-
-
Schulter, S.1
Leistner, C.2
Bischof, H.3
-
27
-
-
28844464788
-
An information fidelity criterion for image quality assessment using natural scene statistics
-
6
-
H. R. Sheikh, A. C. Bovik, and G. De Veciana. An information fidelity criterion for image quality assessment using natural scene statistics. TIP, 14(12):2117-2128, 2005. 6
-
(2005)
TIP
, vol.14
, Issue.12
, pp. 2117-2128
-
-
Sheikh, H.R.1
Bovik, A.C.2
De Veciana, G.3
-
28
-
-
84986308391
-
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
-
W. Shi, J. Caballero, F. Huszar, J. Totz, A. Aitken, R. Bishop, D. Rueckert, and Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In CVPR, 2016. 1, 3
-
(2016)
CVPR
-
-
Shi, W.1
Caballero, J.2
Huszar, F.3
Totz, J.4
Aitken, A.5
Bishop, R.6
Rueckert, D.7
Wang, Z.8
-
29
-
-
84959211848
-
Super-resolution using sub-band self-similarity
-
In 2
-
A. Singh and N. Ahuja. Super-resolution using sub-band self-similarity. In ACCV, 2014. 2
-
(2014)
ACCV
-
-
Singh, A.1
Ahuja, N.2
-
30
-
-
84932095280
-
A+: Adjusted anchored neighborhood regression for fast super-resolution
-
In 1, 2, 5, 6, 7
-
R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted anchored neighborhood regression for fast super-resolution. In ACCV, 2014. 1, 2, 5, 6, 7
-
(2014)
ACCV
-
-
Timofte, R.1
De Smet, V.2
Van Gool, L.3
-
31
-
-
84986290514
-
MatConvNet: Convolutional neural networks for matlab
-
In 5
-
A. Vedaldi and K. Lenc. MatConvNet: Convolutional neural networks for matlab. In ACM MM, 2015. 5
-
(2015)
ACM MM
-
-
Vedaldi, A.1
Lenc, K.2
-
32
-
-
1942436689
-
Image quality assessment: From error visibility to structural similarity
-
6
-
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: From error visibility to structural similarity. TIP, 13(4):600-612, 2004. 6
-
(2004)
TIP
, vol.13
, Issue.4
, pp. 600-612
-
-
Wang, Z.1
Bovik, A.C.2
Sheikh, H.R.3
Simoncelli, E.P.4
-
33
-
-
84973897612
-
Deep networks for image super-resolution with sparse prior
-
In 1, 2, 3, 5, 6, 7
-
Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep networks for image super-resolution with sparse prior. In ICCV, 2015. 1, 2, 3, 5, 6, 7
-
(2015)
ICCV
-
-
Wang, Z.1
Liu, D.2
Yang, J.3
Han, W.4
Huang, T.5
-
34
-
-
85042552390
-
Holistically-nested edge detection
-
In 4
-
S. Xie and Z. Tu. Holistically-nested edge detection. In CVPR, 2015. 4
-
(2015)
CVPR
-
-
Xie, S.1
Tu, Z.2
-
35
-
-
84955298423
-
Single-image super-resolution: A benchmark
-
In 6
-
C.-Y. Yang, C. Ma, and M.-H. Yang. Single-image super-resolution: a benchmark. In ECCV. 2014. 6
-
(2014)
ECCV
-
-
Yang, C.-Y.1
Ma, C.2
Yang, M.-H.3
-
36
-
-
84898787395
-
Fast direct super-resolution by simple functions
-
C.-Y. Yang and M.-H. Yang. Fast direct super-resolution by simple functions. In ICCV, 2013. 1, 2
-
(2013)
ICCV
-
-
Yang, C.-Y.1
Yang, M.-H.2
-
37
-
-
51949105499
-
Image super-resolution as sparse representation of raw image patches
-
J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-resolution as sparse representation of raw image patches. In CVPR, 2008. 1, 2
-
(2008)
CVPR
-
-
Yang, J.1
Wright, J.2
Huang, T.3
Ma, Y.4
-
38
-
-
78049312324
-
Image super-resolution via sparse representation
-
1, 2, 4
-
J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse representation. TIP, 19(11):2861-2873, 2010. 1, 2, 4
-
(2010)
TIP
, vol.19
, Issue.11
, pp. 2861-2873
-
-
Yang, J.1
Wright, J.2
Huang, T.S.3
Ma, Y.4
-
39
-
-
80052803206
-
On single image scale-up using sparse-representations
-
In 2, 5
-
R. Zeyde, M. Elad, and M. Protter. On single image scale-up using sparse-representations. In Curves and Surfaces. 2010. 2, 5
-
(2010)
Curves and Surfaces
-
-
Zeyde, R.1
Elad, M.2
Protter, M.3
|