-
1
-
-
85082218962
-
-
http://ultravideo. cs. tut. fi/.
-
-
-
-
2
-
-
77952633941
-
Maximum a posteriori video super-resolution using a new multichannel image prior
-
S. P. Belekos, N. P. Galatsanos, and A. K. Katsaggelos. Maximum a posteriori video super-resolution using a new multichannel image prior. TIP, 19 (6):1451-1464, 2010.
-
(2010)
TIP
, vol.19
, Issue.6
, pp. 1451-1464
-
-
Belekos, S.P.1
Galatsanos, N.P.2
Katsaggelos, A.K.3
-
3
-
-
84977629569
-
Is image superresolution helpful for other vision tasks?
-
IEEE
-
D. Dai, Y. Wang, Y. Chen, and L. Van Gool. Is image superresolution helpful for other vision tasks? In WACV, pages 1-9. IEEE, 2016.
-
(2016)
WACV
, pp. 1-9
-
-
Dai, D.1
Wang, Y.2
Chen, Y.3
Van Gool, L.4
-
4
-
-
84906484697
-
Learning a deep convolutional network for image super-resolution
-
Springer
-
C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution. In ECCV, pages 184-199. Springer, 2014.
-
(2014)
ECCV
, pp. 184-199
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
5
-
-
84962128851
-
Image superresolution using deep convolutional networks
-
C. Dong, C. C. Loy, K. He, and X. Tang. Image superresolution using deep convolutional networks. TPAMI, 38 (2):295-307, 2016.
-
(2016)
TPAMI
, vol.38
, Issue.2
, pp. 295-307
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
6
-
-
84990837045
-
Accelerating the superresolution convolutional neural network
-
Springer
-
C. Dong, C. C. Loy, and X. Tang. Accelerating the superresolution convolutional neural network. In ECCV, pages 391-407. Springer, 2016.
-
(2016)
ECCV
, pp. 391-407
-
-
Dong, C.1
Loy, C.C.2
Tang, X.3
-
7
-
-
79955142718
-
Variability of eye movements when viewing dynamic natural scenes
-
M. Dorr, T. Martinetz, K. R. Gegenfurtner, and E. Barth. Variability of eye movements when viewing dynamic natural scenes. Journal of vision, 10 (10):28-28, 2010.
-
(2010)
Journal of Vision
, vol.10
, Issue.10
, pp. 28
-
-
Dorr, M.1
Martinetz, T.2
Gegenfurtner, K.R.3
Barth, E.4
-
8
-
-
4544374765
-
Fast and robust multiframe super resolution
-
S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar. Fast and robust multiframe super resolution. TIP, 13 (10):1327-1344, 2004.
-
(2004)
TIP
, vol.13
, Issue.10
, pp. 1327-1344
-
-
Farsiu, S.1
Robinson, M.D.2
Elad, M.3
Milanfar, P.4
-
9
-
-
84965157764
-
Bidirectional recurrent convolutional networks for multi-frame super-resolution
-
Y. Huang, W. Wang, and L. Wang. Bidirectional recurrent convolutional networks for multi-frame super-resolution. In NIPS, pages 235-243, 2015.
-
(2015)
NIPS
, pp. 235-243
-
-
Huang, Y.1
Wang, W.2
Wang, L.3
-
11
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
ACM
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM International Conference on Multimedia, pages 675-678. ACM, 2014.
-
(2014)
Proceedings of the ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
12
-
-
85140805648
-
Video super-resolution with convolutional neural networks
-
A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos. Video super-resolution with convolutional neural networks. IEEE Transactions on Computational Imaging, 2 (2):109-122, 2016.
-
(2016)
IEEE Transactions on Computational Imaging
, vol.2
, Issue.2
, pp. 109-122
-
-
Kappeler, A.1
Yoo, S.2
Dai, Q.3
Katsaggelos, A.K.4
-
13
-
-
78650889108
-
Visual quality of current coding technologies at high definition IPTV bitrates
-
IEEE
-
C. Keimel, J. Habigt, T. Habigt, M. Rothbucher, and K. Diepold. Visual quality of current coding technologies at high definition iptv bitrates. In Multimedia Signal Processing (MMSP), 2010 IEEE International Workshop on, pages 390-393. IEEE, 2010.
-
(2010)
Multimedia Signal Processing (MMSP), 2010 IEEE International Workshop on
, pp. 390-393
-
-
Keimel, C.1
Habigt, J.2
Habigt, T.3
Rothbucher, M.4
Diepold, K.5
-
14
-
-
84986325587
-
Accurate image superresolution using very deep convolutional networks
-
J. Kim, J. K. Lee, and K. M. Lee. Accurate image superresolution using very deep convolutional networks. In CVPR, 2016.
-
(2016)
CVPR
-
-
Kim, J.1
Lee, J.K.2
Lee, K.M.3
-
15
-
-
84986253618
-
Deeply-recursive convolutional network for image super-resolution
-
J. Kim, J. K. Lee, and K. M. Lee. Deeply-recursive convolutional network for image super-resolution. In CVPR, 2016.
-
(2016)
CVPR
-
-
Kim, J.1
Lee, J.K.2
Lee, K.M.3
-
16
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
17
-
-
84973904649
-
Video superresolution via deep draft-ensemble learning
-
R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia. Video superresolution via deep draft-ensemble learning. In CVPR, pages 531-539, 2015.
-
(2015)
CVPR
, pp. 531-539
-
-
Liao, R.1
Tao, X.2
Li, R.3
Ma, Z.4
Jia, J.5
-
18
-
-
84937003233
-
Mcl-v: A streaming video quality assessment database
-
J. Y. Lin, R. Song, C.-H. Wu, T. Liu, H. Wang, and C.-C. J. Kuo. Mcl-v: A streaming video quality assessment database. Journal of Visual Communication and Image Representation, 30:1-9, 2015.
-
(2015)
Journal of Visual Communication and Image Representation
, vol.30
, pp. 1-9
-
-
Lin, J.Y.1
Song, R.2
Wu, C.-H.3
Liu, T.4
Wang, H.5
Kuo, C.-C.J.6
-
20
-
-
84891593494
-
On Bayesian adaptive video super resolution
-
C. Liu and D. Sun. On Bayesian adaptive video super resolution. TPAMI, 36 (2):346-360, 2014.
-
(2014)
TPAMI
, vol.36
, Issue.2
, pp. 346-360
-
-
Liu, C.1
Sun, D.2
-
21
-
-
85016071159
-
Learning a mixture of deep networks for single image super-resolution
-
Springer
-
D. Liu, Z. Wang, N. Nasrabadi, and T. Huang. Learning a mixture of deep networks for single image super-resolution. In ACCV, pages 145-156. Springer, 2016.
-
(2016)
ACCV
, pp. 145-156
-
-
Liu, D.1
Wang, Z.2
Nasrabadi, N.3
Huang, T.4
-
22
-
-
84971529522
-
Robust single image super-resolution via deep networks with sparse prior
-
D. Liu, Z. Wang, B. Wen, J. Yang, W. Han, and T. S. Huang. Robust single image super-resolution via deep networks with sparse prior. TIP, 25 (7):3194-3207, 2016.
-
(2016)
TIP
, vol.25
, Issue.7
, pp. 3194-3207
-
-
Liu, D.1
Wang, Z.2
Wen, B.3
Yang, J.4
Han, W.5
Huang, T.S.6
-
23
-
-
84959250156
-
Handling motion blur in multi-frame super-resolution
-
Z. Ma, R. Liao, X. Tao, L. Xu, J. Jia, and E. Wu. Handling motion blur in multi-frame super-resolution. In CVPR, pages 5224-5232, 2015.
-
(2015)
CVPR
, pp. 5224-5232
-
-
Ma, Z.1
Liao, R.2
Tao, X.3
Xu, L.4
Jia, J.5
Wu, E.6
-
24
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, pages 807-814, 2010.
-
(2010)
ICML
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
25
-
-
77952633044
-
Study of subjective and objective quality assessment of video
-
K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack. Study of subjective and objective quality assessment of video. TIP, 19 (6):1427-1441, 2010.
-
(2010)
TIP
, vol.19
, Issue.6
, pp. 1427-1441
-
-
Seshadrinathan, K.1
Soundararajan, R.2
Bovik, A.C.3
Cormack, L.K.4
-
26
-
-
84986308391
-
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
-
W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In CVPR, pages 1874-1883, 2016.
-
(2016)
CVPR
, pp. 1874-1883
-
-
Shi, W.1
Caballero, J.2
Huszár, F.3
Totz, J.4
Aitken, A.P.5
Bishop, R.6
Rueckert, D.7
Wang, Z.8
-
27
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, pages 1-9, 2015.
-
(2015)
CVPR
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
28
-
-
69349102108
-
Superresolution without explicit subpixel motion estimation
-
H. Takeda, P. Milanfar, M. Protter, and M. Elad. Superresolution without explicit subpixel motion estimation. TIP, 18 (9):1958-1975, 2009.
-
(2009)
TIP
, vol.18
, Issue.9
, pp. 1958-1975
-
-
Takeda, H.1
Milanfar, P.2
Protter, M.3
Elad, M.4
-
29
-
-
84986331470
-
Studying very low resolution recognition using deep networks
-
Z. Wang, S. Chang, Y. Yang, D. Liu, and T. S. Huang. Studying very low resolution recognition using deep networks. In CVPR, pages 4792-4800, 2016.
-
(2016)
CVPR
, pp. 4792-4800
-
-
Wang, Z.1
Chang, S.2
Yang, Y.3
Liu, D.4
Huang, T.S.5
-
30
-
-
84973897612
-
Deep networks for image super-resolution with sparse prior
-
Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep networks for image super-resolution with sparse prior. In ICCV, pages 370-378, 2015.
-
(2015)
ICCV
, pp. 370-378
-
-
Wang, Z.1
Liu, D.2
Yang, J.3
Han, W.4
Huang, T.5
-
31
-
-
80052899838
-
Face recognition in unconstrained videos with matched background similarity
-
IEEE
-
L. Wolf, T. Hassner, and I. Maoz. Face recognition in unconstrained videos with matched background similarity. In CVPR, pages 529-534. IEEE, 2011.
-
(2011)
CVPR
, pp. 529-534
-
-
Wolf, L.1
Hassner, T.2
Maoz, I.3
|